Scattering of plane P 1 waves and dynamic stress concentration by a lined tunnel in a fluid-saturated poroelastic half-space

2017 ◽  
Vol 67 ◽  
pp. 71-84 ◽  
Author(s):  
Zhongxian Liu ◽  
Xin Ju ◽  
Chengqing Wu ◽  
Jianwen Liang
2010 ◽  
Vol 163-167 ◽  
pp. 4265-4268
Author(s):  
Zhi Gang Chen

The dynamic stress concentration on quadratic and U-shaped cavities in half space, which are similar to the cross-section of the tunnels, is solved in this paper impacted by SH-wave. The analytical solution for the cavity in elastic half space is gained by the complex function method. In the complex plane, the scattering wave which satisfies the zero-stress condition at the horizontal surface can be constructed, the problem can be inverted into a set of algebraic equations to solve coefficients of the constructed scattering wave by least square method. For the earthquake-resistance researches, the numerical examples of the dynamic stress concentration around the quadratic and U-shaped cavities impacted by SH-wave are given. The influences of the dynamic stress concentration by the incident wave number and angle, the depth and shape of the cavity are discussed. It is showed that the interaction among the wave, the surface and the shallow buried tunnels should be cared in half space. In this situation, the dynamic stress concentration around the tunnel is greater obvious than the whole space.


Meccanica ◽  
2019 ◽  
Vol 54 (15) ◽  
pp. 2411-2420
Author(s):  
Guanxixi Jiang ◽  
Zailin Yang ◽  
Cheng Sun ◽  
Xinzhu Li ◽  
Yong Yang

2017 ◽  
Vol 24 (1) ◽  
pp. 299-311 ◽  
Author(s):  
Zailin Yang ◽  
Guanxixi Jiang ◽  
Haiyi Tang ◽  
Baitao Sun ◽  
Yong Yang

Based on complex function methods and a multipolar coordinate system, the scattering induced by a cylindrical cavity in a radially inhomogeneous half-space is investigated. Mass density of the half-space varies depending on the distance from the centre of the cavity while the shear modulus is always constant. The wave velocity is expressed as a function of radius vector and the Helmholtz equation is a partial differential equation with a variable coefficient. By means of a conformal mapping technique, the Helmholtz equation with a variable coefficient is transferred into its normal form. Then, displacement fields and corresponding stress components are deduced. Applying the boundary conditions, dynamic stress concentration factors around the cavity are obtained and analyzed. Typical numerical results are presented to demonstrate the distribution of dynamic stress concentration factors when influencing parameters are assumed.


2011 ◽  
Vol 27 (1) ◽  
pp. 37-45 ◽  
Author(s):  
H. Qi ◽  
J. Yang ◽  
Y. Shi

ABSTRACTGreen's function and complex function methods are used here to investigate the problem of the scattering of SH-wave by a cylindrical inclusion near interface in bi-material half-space. Firstly, Green's function was constructed which was an essential solution of displacement field for an elastic right-angle space possessing a cylindrical inclusion while bearing out-of-plane harmonic line source load at any point of its vertical boundary. Secondly, the bi-material media was divided into two parts along the vertical interface using the idea of interface “conjunction”, then undetermined anti-plane forces were loaded at the linking sections respectively to satisfy continuity conditions, and a series of Fredholm integral equations of first kind for determining the unknown forces could be set up through continuity conditions on surface. Finally, some examples for dynamic stress concentration factor of the cylindrical elastic inclusion are given. Numerical results show that dynamic stress concentration factor is influenced by interfaces, free boundary and combination of different media parameters.


Author(s):  
Xiaotang Lv ◽  
Cuiling Ma ◽  
Meixiang Fang

This paper provides a dynamic analysis of the response of a subsurface cylindrical tunnel to SH waves influenced by a neighboring semi-cylindrical hill and semi-cylindrical canyon in half-space using complex functions. For convenience in finding a solution, the half-space is divided into two parts and the scattered wave functions are constructed in both parts. Then the mixed boundary conditions are satisfied by moving coordinates. Finally, the problem is reduced to solving a set of infinite linear algebraic equations, for which the unknown coefficients are obtained by truncation of the infinite set of equations. The effects of the incident angles and frequencies of SH waves, as well as of the radius of the tunnel, hill, and canyon on the dynamic stress concentration of the tunnel are studied. The results show that the hill and canyon have a significant effect on the dynamic stress concentration of the tunnel.


Sign in / Sign up

Export Citation Format

Share Document