Analysis of circumferentially arc welded thin-walled cylinders to investigate the residual stress fields

2008 ◽  
Vol 46 (12) ◽  
pp. 1391-1401 ◽  
Author(s):  
Afzaal M. Malik ◽  
Ejaz M. Qureshi ◽  
Naeem Ullah Dar ◽  
Iqbal Khan
Author(s):  
N U Dar ◽  
E M Qureshi ◽  
A M Malik ◽  
M M I Hammouda ◽  
R A Azeem

In recent years, the demand for resilient welded structures with excellent in-service load-bearing capacity has been growing rapidly. The operating conditions (thermal and/or structural loads) are becoming more stringent, putting immense pressure on welding engineers to secure excellent quality welded structures. The local, non-uniform heating and subsequent cooling during the welding processes cause complex thermal stress—strain fields to develop, which finally leads to residual stresses, distortions, and their adverse consequences. Residual stresses are of prime concern to industries producing weld-integrated structures around the globe because of their obvious potential to cause dimensional instability in welded structures, and contribute to premature fracture/failure along with significant reduction in fatigue strength and in-service performance of welded structures. Arc welding with single or multiple weld runs is an appropriate and cost-effective joining method to produce high-strength structures in these industries. Multi-field interaction in arc welding makes it a complex manufacturing process. A number of geometric and process parameters contribute significant stress levels in arc-welded structures. In the present analysis, parametric studies have been conducted for the effects of a critical geometric parameter (i.e. tack weld) on the corresponding residual stress fields in circumferentially welded thin-walled cylinders. Tack weld offers considerable resistance to the shrinkage, and the orientation and size of tacks can altogether alter stress patterns within the weldments. Hence, a critical analysis for the effects of tack weld orientation is desirable.


Author(s):  
Afzaal M. Malik ◽  
Ejaz M. Qureshi ◽  
Naeem Ullah Dar ◽  
Iqbal Khan

Arc welding is a reliable joining method widely utilized in nuclear, pressure vessels, aerospace and aeronautical structures to ensure the intended in service behaviour during the thermal and/or pressure loadings. Weld induced deformations and high residual stresses often occur during the course of welding. These cause significant threats for the structural integrity of the nuclear power plant components, particularly in stress corrosion inhibited environments owing to the risk of stress corrosion cracking (SCC). In this research, the consequences of five different structural boundary conditions on the evolution of residual stress fields after the welding are investigated. Both experimental and numerical simulations based on finite element modeling are employed during the course of investigation. Full three-dimensional FE models for the circumferentially, arc welded thin-walled cylinders are developed in ANSYS®. The complex coupled, thermo-mechanical phenomenon during the welding is simulated by sequentially coupled approach enhanced by user written APDL subroutines. The role of welding restraints in minimizing / optimizing the residual stresses is presented and discussed in detail. The result reveals that residual stresses show weak dependence on the degree of the restraints. Although the stress levels slightly varies in magnitude, but similar trend is observed for all the structural clamping conditions under study. Simulation results validated through full-scale experiments with high-tech reliably instrumented welding and measuring equipments shows promising features of the developed modelling and simulation strategy for use in shop floor applications.


2016 ◽  
Vol 16 (02) ◽  
pp. 127-132
Author(s):  
G.V. Shimov ◽  
◽  
An.V. Serebryakov ◽  
Al.V. Serebryakov ◽  
M.A. Rosenbaum ◽  
...  

2014 ◽  
Vol 891-892 ◽  
pp. 980-985 ◽  
Author(s):  
Niall Smyth ◽  
Philip E. Irving

This paper reports the effectiveness of residual stress fields induced by laser shock peening (LSP) to recover pristine fatigue life. Scratches 50 and 150 μm deep with 5 μm root radii were introduced into samples of 2024-T351 aluminium sheet 2 mm thick using a diamond tipped tool. LSP was applied along the scratch in a band 5 mm wide. Residual stress fields induced were measured using incremental hole drilling. Compressive residual stress at the surface was-78 MPa increasing to-204 MPa at a depth of 220 μm. Fatigue tests were performed on peened, unpeened, pristine and scribed samples. Scratches reduced fatigue lives by factors up to 22 and LSP restored 74% of pristine life. Unpeened samples fractured at the scratches however peened samples did not fracture at the scratches but instead on the untreated rear face of the samples. Crack initiation still occurred at the root of the scribes on or close to the first load cycle in both peened and unpeened samples. In peened samples the crack at the root of the scribe did not progress to failure, suggesting that residual stress did not affect initiation behaviour but instead FCGR. A residual stress model is presented to predict crack behaviour in peened samples.


Author(s):  
N. A. Leggatt ◽  
R. J. Dennis ◽  
P. J. Bouchard ◽  
M. C. Smith

Numerical methods have been established to simulate welding processes. Of particular interest is the ability to predict residual stress fields. These fields are often used in support of structural integrity assessments where they have the potential, when accurately characterised, to offer significantly less conservative predictions of residual profiles compared to those found in assessment codes such as API 579, BS7910 and R6. However, accurate predictions of residual stress profiles that compare favourably with measurements do not necessarily suggest an accurate prediction of component distortions. This paper presents a series of results that compare predicted distortions for a variety of specimen mock-ups with measurements. A range of specimen thicknesses will be studied including, a 4mm thick DH-36 ferritic plate containing a single bead, a 4mm thick DH-36 ferritic plate containing fillet welds, a 25mm thick 316L austenitic plate containing a groove weld and a 35mm thick esshete 1250 austenitic disc containing a concentric ring weld. For each component, distortion measurements have been compared with the predicted distortions with a number of key features being investigated. These include the influence of ‘small’ vs ‘large’ strain deformation theory, the ability to predict distortions using simplified analysis methods such as simultaneous bead deposition and the influence of specimen thickness on the requirement for particular analysis features. The work provides an extremely useful insight into how existing numerical methods used to predict residual stress fields can be utilised to predict the distortions that occur as a result of the welding fabrication process.


Sign in / Sign up

Export Citation Format

Share Document