Experimental study on the constitutive relation of austenitic stainless steel S31608 under monotonic and cyclic loading

2014 ◽  
Vol 83 ◽  
pp. 19-27 ◽  
Author(s):  
Y.Q. Wang ◽  
T. Chang ◽  
Y.J. Shi ◽  
H.X. Yuan ◽  
L. Yang ◽  
...  
Author(s):  
Li H. Wang

Fatigue crack growth rates (FCGR) of sensitized austenitic stainless steel (SS) were measured in simulated BWR water at 288 °C using compact tension specimens under different cyclic loading modes, including saw-tooth, trapezoidal and constant loading pattern. This study tested sensitized SS in normal water chemistry (NWC) and hydrogen water chemistry (HWC) respectively, and attempted to clarify the effect of low electrochemical corrosion potential on the FCGR of sensitized stainless steel. Significant environment effects on FCGR of sensitized stainless steel were observed in both water chemistries when compared with air fatigue curve. The pronounced suppression effect of HWC on crack growth in statically sustained load was not observed in cyclic loading condition. ASME curve doesn’t seem to be conservative and could not bound all the FCGR data tested in this study. In contrast, all of the measured FCGR data were bound by the JSME disposition curve. PLEDGE model proposed by General Electric reasonably predicted the FCGR of sensitized SS in NWC, but underestimated the FCGR in HWC. ANL’s superposition model successfully estimated the FCGR measured in both water chemistries. The fractography exhibited transgranular fracture mode during the crack initiation and growth stage. No differences in the appearance of fracture surface were observed in HWC and NWC. Only in very high DO environments, the sensitized 304 SS exhibited the mixed mode of intergranular and transgranular during growth stage.


Author(s):  
Masao Sakane ◽  
Akihiko Inoue ◽  
Xu Chen ◽  
Kwang Soo Kim

This paper studies the cyclic ratcheting for two materials under multiaxial stress state. The two materials are SUS304 austenitic stainless steel and A1070 pure aluminum. The former material is known as a material that gives strong additional hardening and the latter material shows little additional hardening under nonproportional cyclic loading. The ratcheting behavior under 12 stress-strain waveforms was extensively studied using hollow cylinder specimen. Ratcheting strain depended on the material and stress-strain waveform. Anisotropic ratcheting was found in A1070 but isotropic ratcheting was observed in SUS304 steel.


Sign in / Sign up

Export Citation Format

Share Document