Stress softening and hardening during compression and tensile consecutive cyclic loading of Mn18Cr18N austenitic stainless steel

2017 ◽  
Vol 704 ◽  
pp. 138-146 ◽  
Author(s):  
Fei Li ◽  
Huayu Zhang ◽  
Wenwu He ◽  
Xiaodong Zhao ◽  
Huiqin Chen
Author(s):  
Li H. Wang

Fatigue crack growth rates (FCGR) of sensitized austenitic stainless steel (SS) were measured in simulated BWR water at 288 °C using compact tension specimens under different cyclic loading modes, including saw-tooth, trapezoidal and constant loading pattern. This study tested sensitized SS in normal water chemistry (NWC) and hydrogen water chemistry (HWC) respectively, and attempted to clarify the effect of low electrochemical corrosion potential on the FCGR of sensitized stainless steel. Significant environment effects on FCGR of sensitized stainless steel were observed in both water chemistries when compared with air fatigue curve. The pronounced suppression effect of HWC on crack growth in statically sustained load was not observed in cyclic loading condition. ASME curve doesn’t seem to be conservative and could not bound all the FCGR data tested in this study. In contrast, all of the measured FCGR data were bound by the JSME disposition curve. PLEDGE model proposed by General Electric reasonably predicted the FCGR of sensitized SS in NWC, but underestimated the FCGR in HWC. ANL’s superposition model successfully estimated the FCGR measured in both water chemistries. The fractography exhibited transgranular fracture mode during the crack initiation and growth stage. No differences in the appearance of fracture surface were observed in HWC and NWC. Only in very high DO environments, the sensitized 304 SS exhibited the mixed mode of intergranular and transgranular during growth stage.


Author(s):  
Stefan Utz ◽  
Ewa Soppa ◽  
Christopher Kohler ◽  
Xaver Schuler ◽  
Horst Silcher

The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 (AISI–347) under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the art of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading — pure thermal and pure mechanical — were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [1]. Interrupted thermal cyclic tests in the temperature range of 150 °C to 300 °C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM, were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which micro-cracks arise and evolve to a dominant crack. Finally, these micro-cracks cause continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied in the framework of the research project [2]. With a combination of interrupted LCF tests and EBSD measurements the deformation induced transformation of a fcc austenite into a bcc α′-martensite was observed in different stages of the specimen lifetime. The plastic zones develop at the crack tips, in which stress and strain amplitudes are much higher than the nominal loading, and enable martensitic transformation in the surrounding of the crack tip. The consequence of this is that cracks grow in the “martensitic tunnels”. The short and long crack growth behaviours of the steel X6CrNiNb18-10 under mechanical loading at room temperature and T = 288 °C were studied for different loading parameters. Moreover, the R-ratio was modified in order to study the effect of crack closure at the crack tip for long cracks. Several FE-models of specimens with different geometries and microstructures were created and cyclically loaded according to the experimental boundary conditions. A plastic constitutive law based on a Chaboche type model was implemented as a user subroutine in the FE software ABAQUS. The corresponding material parameters were identified using uniaxial LCF tests of X6CrNiNb18-10 with different strain amplitudes and at different temperatures. These calculations aimed in the estimation of stress and strain distributions in the critical areas in which the crack initiation was expected.


2012 ◽  
Vol 151 ◽  
pp. 721-725
Author(s):  
R. Suresh Kumar ◽  
P. Chellapandi ◽  
C. Lakshmana Rao

Mechanical behavior of the austenitic stainless steel under monotonic and cyclic loading at room temperature has been mathematically predicted. Materials like SS 316 LN exhibit cyclic hardening behavior under cyclic loading. Based on the characteristics of yield surface, cyclic hardening can be classified into isotropic and kinematic hardening. Armstrong-Frederic model is used for predicting the kinematic hardening of this material. It is basically a five parameter, nonlinear kinematic hardening model. Cyclic tests for various ranges were carried out to derive the isotropic material parameter required for modeling. Kinematic hardening material parameter required for modeling were computed based on both monotonic tension and torsion tests. By using these parameters the developed program is able to model the mechanical behavior of austenitic stainless steel under monotonic and cyclic loading conditions at room temperature. Comparison of the predicted results with the experimental results shows that the kinematic hardening material parameters derived from the monotonic torsion tests were in good agreement than that of the monotonic tension tests. Also it is recommended to use more material parameter constitutive models to improve the accuracy of the mathematical predictions for the material behavior under cyclic loading.


Sign in / Sign up

Export Citation Format

Share Document