Multiobjective crashworthiness optimization of multi-cornered thin-walled sheet metal members

2015 ◽  
Vol 89 ◽  
pp. 31-41 ◽  
Author(s):  
Milad Abbasi ◽  
Sekhar Reddy ◽  
Ali Ghafari-Nazari ◽  
Mohammad Fard
1989 ◽  
Vol 56 (1) ◽  
pp. 113-120 ◽  
Author(s):  
W. Abramowicz ◽  
T. Wierzbicki

A method is developed for predicting crush behavior of multicorner prismatic columns subjected to an axial compressive load. The corner element of an arbitrary angle is analyzed first using rigorous methods of structural plasticity with finite deformations and rotations. On that basis, crush predictions are made for multicorner columns with an even number of corners. Static crush tests on square, hexagonal, and rhomboidal thin-walled columns are also reported here. Good correlation between the theory and experiments was obtained for the magnitude of a mean crushing force and kinematic parameters describing the process of progressive folding.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 370 ◽  
Author(s):  
Oleksandr Semko ◽  
Viktor Dariienko ◽  
Vitaliy Sirobaba

The calculation, modeling and experimental research of steel-concrete tubular elements made of thin-walled galvanized sheet metal and lightweight concrete have been carried out. The proposed type of structures can be used as a separate structure in the form of a column or a pillar, and one of the types of the reinforcement of a certain light structure. The basic technological and constructive requirements for manufacturing and further exploitation of structures are given. For determination of actual work’s indexes of constructions experimental research of standards are undertaken, and recommendations on adjustment of well-known calculation formulas of close constructions as for structural parameters are given. The design (modeling) was performed in MSC / Nastran software. An analysis of the proposed structures use is carried out with the corresponding conclusions. 


2014 ◽  
Vol 31 (5) ◽  
pp. 879-897 ◽  
Author(s):  
Shujuan Hou ◽  
Zhidan Zhang ◽  
Xujing Yang ◽  
Hanfeng Yin ◽  
Qing Li

Purpose – The purpose of this paper is to optimize a new thin-walled cellular configurations with crashworthiness criteria, so as to improve the crashworthiness of components of a vehicle body. Design/methodology/approach – ANSYS Parametric Design Language is used to create the parameterized models so that the design variables can be changed conveniently. Moreover, the surrogate technique, namely response surface method, is adopted for fitting objective and constraint functions. The factorial design and D-optimal criterion are employed to screen active parameters for constructing the response functions of the specific energy absorption and the peak crushing force. Finally, sequential quadratic programming-NLPQL is utilized to solve the design optimization problem of the new cellular configurations filled with multi-cell circular tubes under the axial crushing loading. Findings – Two kinds of distribution modes of the cellular configurations are first investigated, which are in an orthogonal way and in a diamond fashion. After comparing the optimized configurations of the rectangular distribution with the annular distribution of the multi-cell fillers, it is found that the orthogonal way seems better in the aspects of crashworthiness than the diamond fashion. Originality/value – The two new thin-walled cellular configuration are studied and optimized with the crashworthiness criteria. Study on the new cellular configurations is very valuable for improving the crashworthiness of components of a vehicle body. Meanwhile, the factorial design and the factor screening are adopted in the process of the crashworthiness optimization of the new thin-walled cellular configurations.


Sign in / Sign up

Export Citation Format

Share Document