On nonlinear thermal buckling analysis of cylindrical shells

2015 ◽  
Vol 95 ◽  
pp. 170-182 ◽  
Author(s):  
A. Alijani ◽  
M. Darvizeh ◽  
A. Darvizeh ◽  
R. Ansari
2019 ◽  
Vol 11 (01) ◽  
pp. 1950005 ◽  
Author(s):  
Alireza Shaterzadeh ◽  
Kamran Foroutan ◽  
Habib Ahmadi

In this paper, an analytical method is used to study the nonlinear static and dynamic thermal buckling analysis of imperfect spiral stiffened functionally graded (SSFG) cylindrical shells. The SSFG cylindrical shell is surrounded by a linear and nonlinear elastic foundation. The proposed linear model is based on the two-parameter elastic foundation (Winkler and Pasternak). A three-parameter elastic foundation with hardening/softening cubic nonlinearity is used for nonlinear model. The material properties are temperature dependent and assumed to be continuously graded in the thickness direction. Also, for thermal buckling analysis, the uniform and linear temperature distribution in thickness direction is considered. The SSFG cylindrical shells are considered with various angles for spiral stiffeners. The strain–displacement relations are obtained based on the von Kármán nonlinear equations and the classical plate theory of shells. The smeared stiffener technique and the Galerkin method are applied to solve the nonlinear problem. In order to find the nonlinear dynamic thermal buckling responses, the fourth-order Runge–Kutta method is used. To validate the results, comparisons are made with those available in literature and good agreements are shown. The effects of various geometrical and material parameters are investigated on the nonlinear static and dynamic thermal buckling response of SSFG cylindrical shells.


2018 ◽  
Vol 129 ◽  
pp. 1-9 ◽  
Author(s):  
Yiwen Ni ◽  
Zhenzhen Tong ◽  
Dalun Rong ◽  
Zhenhuan Zhou ◽  
Xinsheng Xu

2011 ◽  
Vol 11 (02) ◽  
pp. 215-236 ◽  
Author(s):  
MATTEO BROGGI ◽  
ADRIANO CALVI ◽  
GERHART I. SCHUËLLER

Cylindrical shells under axial compression are susceptible to buckling and hence require the development of enhanced underlying mathematical models in order to accurately predict the buckling load. Imperfections of the geometry of the cylinders may cause a drastic decrease of the buckling load and give rise to the need of advanced techniques in order to consider these imperfections in a buckling analysis. A deterministic buckling analysis is based on the use of the so-called knockdown factors, which specifies the reduction of the buckling load of the perfect shell in order to account for the inherent uncertainties in the geometry. In this paper, it is shown that these knockdown factors are overly conservative and that the fields of probability and statistics provide a mathematical vehicle for realistically modeling the imperfections. Furthermore, the influence of different types of imperfection on the buckling load are examined and validated with experimental results.


Sign in / Sign up

Export Citation Format

Share Document