Nonlinear Static and Dynamic Thermal Buckling Analysis of Spiral Stiffened Functionally Graded Cylindrical Shells with Elastic Foundation

2019 ◽  
Vol 11 (01) ◽  
pp. 1950005 ◽  
Author(s):  
Alireza Shaterzadeh ◽  
Kamran Foroutan ◽  
Habib Ahmadi

In this paper, an analytical method is used to study the nonlinear static and dynamic thermal buckling analysis of imperfect spiral stiffened functionally graded (SSFG) cylindrical shells. The SSFG cylindrical shell is surrounded by a linear and nonlinear elastic foundation. The proposed linear model is based on the two-parameter elastic foundation (Winkler and Pasternak). A three-parameter elastic foundation with hardening/softening cubic nonlinearity is used for nonlinear model. The material properties are temperature dependent and assumed to be continuously graded in the thickness direction. Also, for thermal buckling analysis, the uniform and linear temperature distribution in thickness direction is considered. The SSFG cylindrical shells are considered with various angles for spiral stiffeners. The strain–displacement relations are obtained based on the von Kármán nonlinear equations and the classical plate theory of shells. The smeared stiffener technique and the Galerkin method are applied to solve the nonlinear problem. In order to find the nonlinear dynamic thermal buckling responses, the fourth-order Runge–Kutta method is used. To validate the results, comparisons are made with those available in literature and good agreements are shown. The effects of various geometrical and material parameters are investigated on the nonlinear static and dynamic thermal buckling response of SSFG cylindrical shells.

Author(s):  
Roshan Lal ◽  
Rahul Saini

In this article, the effect of Pasternak foundation on free axisymmetric vibration of functionally graded circular plates subjected to mechanical in-plane force and a nonlinear temperature distribution (NTD) along the thickness direction has been investigated on the basis of classical plate theory. The plate material is graded in thickness direction according to a power-law distribution and its mechanical properties are assumed to be temperature-dependent (TD). At first, the equation for thermo-elastic equilibrium and then equation of motion for such a plate model have been derived by Hamilton's principle. Employing generalized differential quadrature rule (GDQR), the numerical values of thermal displacements and frequencies for clamped and simply supported plates vibrating in the first three modes have been computed. Values of in-plane force parameter for which the plate ceases to vibrate have been reported as critical buckling loads. The effect of temperature difference, material graded index, in-plane force, and foundation parameters on the frequencies has been analyzed. The benchmark results for uniform and linear temperature distributions (LTDs) have been computed. A study for plates made with the material having temperature-independent (TI) mechanical properties has also been performed as a special case. Comparison of results with the published work has been presented.


2018 ◽  
Vol 18 (04) ◽  
pp. 1850049 ◽  
Author(s):  
Smita Parida ◽  
Sukesh Chandra Mohanty

This paper deals with the free vibration and buckling analysis of functionally graded material (FGM) plates, resting on the Winkler–Pasternak elastic foundation. The higher order shear deformation plate theory (HSPT) is adopted for the realistic variation of transverse displacement through the thickness, using the power law distribution to describe the variation of the material properties. Both the effects of shear deformation and rotary inertia are considered. In the present model, the plate is discretised into [Formula: see text] eight noded serendipity quadratic elements with seven nodal degrees of freedom (DOFs). The validation study is carried out by comparing the calculated values with those given in the literature. The effects of various parameters like the Winkler and Pasternak modulus coefficients, volume fraction index, aspect ratio, thickness ratio and different boundary conditions on the behaviour of the FGM plates are studied.


2019 ◽  
Vol 19 (10) ◽  
pp. 1950114 ◽  
Author(s):  
Habib Ahmadi ◽  
Kamran Foroutan

This paper presents the superharmonic and subharmonic resonances of spiral stiffened functionally graded (SSFG) cylindrical shells under harmonic excitation. The stiffeners are considered to be externally or internally added to the shell. Also, it is assumed that the material properties of the stiffeners are continuously graded in the thickness direction. In order to model the stiffeners, the smeared stiffener technique is used. Within the context of the classical plate theory of shells, the von Kármán nonlinear equations are derived for the shell and stiffeners based on Hooke’s law and the relations of stress-strain. Using Galerkin’s method, the equation of motion is discretized. The superharmonic and subharmonic resonances are analyzed by the method of multiple scales. The influence of the material parameters and various geometrical properties on the superharmonic and subharmonic resonances of SSFG cylindrical shells is investigated. Considering these results, the hardening nonlinearity behavior and jump value of cylindrical shell is less and more than others, when the angle of stiffeners is [Formula: see text] and [Formula: see text], respectively.


2020 ◽  
Vol 20 (07) ◽  
pp. 2050074
Author(s):  
Kamran Foroutan ◽  
Habib Ahmadi

In this paper, semi-analytical and analytical methods for the nonlinear static and dynamic buckling analyses of imperfect functionally graded porous (FGP) cylindrical shells subjected to axial compression are presented. The structure is embedded within a generalized nonlinear elastic foundation, treated as a two-parameter Winkler–Pasternak foundation augmented by a nonlinear cubic stiffness. The material property of the shell changes continuously through the thickness. Two types of FGP distributions, i.e. uniform porosity distribution (UPD) and nonuniform porosity distribution (NPD), are considered. By applying the Galerkin’s method to the von Kármán equations, the buckling of the shells was solved. The fourth-order Runge–Kutta method is utilized to obtain the responses of nonlinear dynamic buckling (NDB). The results obtained for some special cases are compared with those available elsewhere. The effects of various geometrical properties, material parameters and elastic foundation coefficients are investigated on the nonlinear static buckling (NSB) and dynamic buckling (DB) analyses of the shells. It was shown that various types of porosity, imperfection and the elastic foundation parameters have a strong effect on the buckling behaviors of the FGP cylindrical shells.


2011 ◽  
Vol 14 (1) ◽  
pp. 5-33 ◽  
Author(s):  
Mohamed Bourada ◽  
Abdelouahed Tounsi ◽  
Mohammed Sid Ahmed Houari ◽  
El Abbes Adda Bedia

2017 ◽  
Vol 15 (3) ◽  
pp. 545 ◽  
Author(s):  
Fatemeh Farhatnia ◽  
Mahsa Ghanbari-Mobarakeh ◽  
Saeid Rasouli-Jazi ◽  
Soheil Oveissi

In this paper, we propose a thermal buckling analysis of a functionally graded (FG) circular plate exhibiting polar orthotropic characteristics and resting on the Pasternak elastic foundation. The plate is assumed to be exposed to two kinds of thermal loads, namely, uniform temperature rise and linear temperature rise through thickness. The FG properties are assumed to vary continuously in the direction of thickness according to the simple power law model in terms of the volume fraction of two constituents. The governing equilibrium equations in buckling are based on the Von-Karman nonlinearity. To obtain the critical buckling temperature, we exploit a semi-numerical technique called differential transform method (DTM). This method provides fast accurate results and has a short computational calculation compared with the Taylor expansion method. Furthermore, some numerical examples are provided to consider the influence of various parameters such as volume fraction index, thickness-to-radius ratio, elastic foundation stiffness, modulus ratio of orthotropic materials and influence of boundary conditions. In order to predict the critical buckling temperature, it is observed that the critical temperature can be easily adjusted by appropriate variation of elastic foundation parameters and gradient index of FG material. Finally, the numerical results are compared with those available in the literature to confirm the accuracy and reliability of the DTM to determine the critical buckling temperature.


Sign in / Sign up

Export Citation Format

Share Document