Evaluation of DBA-L pressure vessel design method by 2D and 3D solid models

2019 ◽  
Vol 144 ◽  
pp. 106334
Author(s):  
Hongjun Li ◽  
Zhewei Zhou ◽  
Xinchen Qu ◽  
Yeping Xie ◽  
Xun Huang
Author(s):  
Mohsen Rezayat

Abstract An integral part of implementing parallel product and process designs is simulation through numerical analysis. This simulation-driven design requires discretization of the 3D part in an appropriate manner. If the part is thin or has thin sections (e.g., plastic parts), then an analysis model with reduced dimensionality may be more accurate and economical than a standard 3D model. In addition, substantial simplification of some details in the design geometry may be beneficial and desirable in the analysis model. Unfortunately, the majority of CAD systems do not provide the means for abstraction of appropriate analysis models. In this paper we present a new approach, based on midsurface abstraction, which holds significant promise in simplifying simulation-driven design. The method is user-friendly because very little interaction is required to guide the software in its automatic creation of the desired analysis model. It is also robust because it handles typical parts with complex and interacting features. Application of the method for feature recognition and abstraction is also briefly discussed.


2019 ◽  
Vol 103 (9-10) ◽  
pp. 493-504
Author(s):  
Matthew Jian-Qiao Peng ◽  
Xiangyang Ju ◽  
Hai-Yan Chen ◽  
Bai Bo ◽  
XinXu Li

Purpose: A series models of surgical internal fixation for femoral neck fracture of Pauwels II will be constructed by an innovative approach of finite element so as to determine the most stable fixation by comparison of their biomechanical performance. Method: Seventeen specimens of proximal femurs scanned by computed tomography in Digital Imaging and Communications in Medicine (DICOM) format were input onto Mimics rebuilding 3D models; their stereolithography (STL) format dataset were imported into Geomagic Studio (3D Systems, Rock Hill, South Carolina) for simulative osteotomy and non-uniform rational basis spline kartograph; the generated IGS dataset were interacted by UG to fit simulative 3D-solid models; 3 sorts of internal fixators were expressed in 3D model by ProE (PTC, Boston, Connecticut) program virtually. Processed by HyperMesh (Altair, Troy, Michigan), all compartments (fracture model + internal immobilization) were assembled onto 3 systems actually as: Dynamic hip screw (DHS) / Lag screw (LS) / DHS+LS. Eventually, a numerical model of finite elemental analysis was exported to ANSYS for solution. Result: Three models of internal fixations for femoral neck fracture of Pauwels II were established and validated effectively, the stress and displacement of each internal pin were analyzed, the advantages of each surgical therapy for femoral neck fracture of Pauwels II were compared and demonstrated synthetically as: “The contact stress of 3-LS-system was checked to be the least; the interfragmentary displacement of DHS+1-LS assemblages was assessed to be the least.” Conclusion: 3-LS-system is recommended to be a clinical optimization for Pauwels II femoral neck facture, by this therapeutic fixation mechanically, breakage of fixators, or secondary fracture rarely occurs.


2004 ◽  
Author(s):  
Timothy M. Boundy ◽  
Gary J. McCarty ◽  
James F. Szatkowski ◽  
Nicholas A. Vitale
Keyword(s):  

Author(s):  
Xin Ma ◽  
Zhongpei Ning ◽  
Honggang Chen ◽  
Jinyang Zheng

Ultra-High Pressure Vessel (UHPV) with self-protective Flat Steel Ribbons (FSR) wound and Tooth-Locked Quick-Actuating (TLQA) end closure is a new type of vessel developed in recent years. When the structural parameters of its TLQA and Buttress Thread (BT) end closure are determined using the ordinary engineering design method, Design by Analysis (DBA) shows that the requirement on fatigue life of this unique UHPV could hardly be satisfied. To solve the above problem, an integrated FE modeling method has been proposed in this paper. To investigate the fatigue life of TLQA and BT end closures of a full-scale unique UHPV, a three-dimensional (3-D) Finite Element (FE) solid model and a two-dimensional (2-D) FE axisymmetric model are built in FE software ANSYS, respectively., Nonlinear FE analysis and orthogonal testing are both conducted to obtain the optimum structure strength, in which the peak stress in the TLQA or BT end closure of the unique UHPV is taken as an optimal target. The important parameters, such as root structure of teeth, contact pressure between the pre-stressed collar and the cylinder end, the knuckle radius, the buttress thread profile and the local structure of the cylinder, are optimized. As a result, both the stress distribution at the root of teeth and the axial load carried by each thread are improved. Therefore, the load-carrying capacity of the end closure has been reinforced and the fatigue life of unique UHPV has been extended.


2019 ◽  
Vol 256 ◽  
pp. 02001
Author(s):  
Ren Xincheng ◽  
Hongjun Li ◽  
Xun Huang

Stress categorization is an essential procedure in Design by Analysis (DBA) pressure vessel design methods based on elastic analysis in ASME and EN code. It was difficult to implement especially around structural discontinuities. A new elastic analysis, DBA-L, was proposed recently to avoid stress categorization. A model of the cylindrical pressure vessel with spherical end is used to check the validity of this method by comparing with other design methods based on stress categorization procedures and elastic-plastic stress analysis from ASME and EN code. The results indicate that the DBA-L is an economic and explicit method, and can be used an alternative method to stress categorization.


2013 ◽  
Vol 846-847 ◽  
pp. 52-55
Author(s):  
Kai Yang ◽  
Jian Cheng Yang ◽  
Jian Feng Qin ◽  
Hua Qing Wang ◽  
Yu Bai ◽  
...  

This article designs a new set of beating-up mechanism for the multilayer angle interlocking construction loom based on the requirements of special material of carbon fiber and weaving technology,and it can battening 30 layers carbon fiber at a beating-up.Through building the 3D solid models for linkage mechanism in SolidWorks, it show that the beating-up mechanism Run smoothly by the kinematics and dynamics analysis of different beating-up rule in ADAMS.


Sign in / Sign up

Export Citation Format

Share Document