A Design Tool for Producing 3D Solid Models from Sketches

2004 ◽  
Author(s):  
Timothy M. Boundy ◽  
Gary J. McCarty ◽  
James F. Szatkowski ◽  
Nicholas A. Vitale
Keyword(s):  
Author(s):  
Mohsen Rezayat

Abstract An integral part of implementing parallel product and process designs is simulation through numerical analysis. This simulation-driven design requires discretization of the 3D part in an appropriate manner. If the part is thin or has thin sections (e.g., plastic parts), then an analysis model with reduced dimensionality may be more accurate and economical than a standard 3D model. In addition, substantial simplification of some details in the design geometry may be beneficial and desirable in the analysis model. Unfortunately, the majority of CAD systems do not provide the means for abstraction of appropriate analysis models. In this paper we present a new approach, based on midsurface abstraction, which holds significant promise in simplifying simulation-driven design. The method is user-friendly because very little interaction is required to guide the software in its automatic creation of the desired analysis model. It is also robust because it handles typical parts with complex and interacting features. Application of the method for feature recognition and abstraction is also briefly discussed.


2019 ◽  
Vol 103 (9-10) ◽  
pp. 493-504
Author(s):  
Matthew Jian-Qiao Peng ◽  
Xiangyang Ju ◽  
Hai-Yan Chen ◽  
Bai Bo ◽  
XinXu Li

Purpose: A series models of surgical internal fixation for femoral neck fracture of Pauwels II will be constructed by an innovative approach of finite element so as to determine the most stable fixation by comparison of their biomechanical performance. Method: Seventeen specimens of proximal femurs scanned by computed tomography in Digital Imaging and Communications in Medicine (DICOM) format were input onto Mimics rebuilding 3D models; their stereolithography (STL) format dataset were imported into Geomagic Studio (3D Systems, Rock Hill, South Carolina) for simulative osteotomy and non-uniform rational basis spline kartograph; the generated IGS dataset were interacted by UG to fit simulative 3D-solid models; 3 sorts of internal fixators were expressed in 3D model by ProE (PTC, Boston, Connecticut) program virtually. Processed by HyperMesh (Altair, Troy, Michigan), all compartments (fracture model + internal immobilization) were assembled onto 3 systems actually as: Dynamic hip screw (DHS) / Lag screw (LS) / DHS+LS. Eventually, a numerical model of finite elemental analysis was exported to ANSYS for solution. Result: Three models of internal fixations for femoral neck fracture of Pauwels II were established and validated effectively, the stress and displacement of each internal pin were analyzed, the advantages of each surgical therapy for femoral neck fracture of Pauwels II were compared and demonstrated synthetically as: “The contact stress of 3-LS-system was checked to be the least; the interfragmentary displacement of DHS+1-LS assemblages was assessed to be the least.” Conclusion: 3-LS-system is recommended to be a clinical optimization for Pauwels II femoral neck facture, by this therapeutic fixation mechanically, breakage of fixators, or secondary fracture rarely occurs.


2019 ◽  
Vol 144 ◽  
pp. 106334
Author(s):  
Hongjun Li ◽  
Zhewei Zhou ◽  
Xinchen Qu ◽  
Yeping Xie ◽  
Xun Huang

2013 ◽  
Vol 846-847 ◽  
pp. 52-55
Author(s):  
Kai Yang ◽  
Jian Cheng Yang ◽  
Jian Feng Qin ◽  
Hua Qing Wang ◽  
Yu Bai ◽  
...  

This article designs a new set of beating-up mechanism for the multilayer angle interlocking construction loom based on the requirements of special material of carbon fiber and weaving technology,and it can battening 30 layers carbon fiber at a beating-up.Through building the 3D solid models for linkage mechanism in SolidWorks, it show that the beating-up mechanism Run smoothly by the kinematics and dynamics analysis of different beating-up rule in ADAMS.


Author(s):  
Mohamed A. El-Komy ◽  
Sayed M. Metwalli

Non-Uniform Rational B-Splines (NURBS) can represent curves and surfaces of any degree. Usually in the same curve, however, the degree is unique. The goal of this work is to identify single and exact corner point of lines represented by cubic or other NURBS. The combination of arcs and lines can then be represented by one NURBS with error not to exceed (10−12). The developed procedure can represent any NURBS curve and surface of any degree with full control on all parameters, control points, weights, knot vectors, and number of segments representing the curve or surface, in addition to, the basis functions examination. The optimization identifies the parameters and geometry to insure any required level of accuracy to represent singular corner solid models to allow a single cubic or other NURBS representing the whole solid. It is concluded that the singular corner point can be identified with cubic NURBS. Applications to several 3D solid CAD models are used to verify such a technique.


Author(s):  
Zahed Siddique ◽  
Jiju A. Ninan

Designing family of products require analysis and evaluation of performance for the entire product family. In the past, products were mainly mass-produced hence the use of CAD/CAE was restricted to developing and analyzing individual products. Since the products offered using a platform approach include a variety of products built upon a common platform, CAD/CAE tools need to be explored further to assist in customization of products according to the customer needs. In this paper we investigate the development of a Product Family FEA (PFFEA) module that can support FEA analysis of user customized product families members. Customer specifications for family members are gathered using the internet, users are allowed to scale and change configurations of products. These specifications are then used to automatically generate 3D solid models of the product and then perform FEA to determine feasibility of the customer specified product. In this paper, development of the PFFEA module is illustrated using a family of lawn trimmer and edger. The PFFEA module uses Pro/E to generate the solid model and ANSYS as the base FEA software.


Sign in / Sign up

Export Citation Format

Share Document