Wave based method for free vibration characteristics of functionally graded cylindrical shells with arbitrary boundary conditions

2020 ◽  
Vol 148 ◽  
pp. 106580 ◽  
Author(s):  
Tao Liu ◽  
Ailun Wang ◽  
Qingshan Wang ◽  
Bin Qin
2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Dong Tang ◽  
Guoxun Wu ◽  
Xiongliang Yao ◽  
Chuanlong Wang

An analytical procedure for free vibration analysis of circular cylindrical shells with arbitrary boundary conditions is developed with the employment of the method of reverberation-ray matrix. Based on the Flügge thin shell theory, the equations of motion are solved and exact solutions of the traveling wave form along the axial direction and the standing wave form along the circumferential direction are obtained. With such a unidirectional traveling wave form solution, the method of reverberation-ray matrix is introduced to derive a unified and compact form of equation for natural frequencies of circular cylindrical shells with arbitrary boundary conditions. The exact frequency parameters obtained in this paper are validated by comparing with those given by other researchers. The effects of the elastic restraints on the frequency parameters are examined in detail and some novel and useful conclusions are achieved.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Lun Liu ◽  
Dengqing Cao ◽  
Shupeng Sun

The free vibration analysis of rotating ring-stiffened cylindrical shells with arbitrary boundary conditions is investigated by employing the Rayleigh–Ritz method. Six sets of characteristic orthogonal polynomials satisfying six classical boundary conditions are constructed directly by employing Gram–Schmidt procedure and then are employed to represent the general formulations for the displacements in any axial mode of free vibrations for shells. Employing those formulations during the Rayleigh–Ritz procedure and based on Sanders' shell theory, the eigenvalue equations related to rotating ring-stiffened cylindrical shells with various classical boundary conditions have been derived. To simulate more general boundaries, the concept of artificial springs is employed and the eigenvalue equations related to free vibration of shells under elastic boundary conditions are derived. By adjusting the stiffness of artificial springs, those equations can be used to investigate the vibrational characteristics of shells with arbitrary boundaries. By comparing with the available analytical results for the ring-stiffened cylindrical shells and the rotating shell without stiffeners, the method proposed in this paper is verified. Strong convergence is also observed from convergence study. Further, the effects of parameters, such as the stiffness of artificial springs, the rotating speed of the ring-stiffened shell, the number of ring stiffeners and the depth to width ratio of ring stiffeners, on the natural frequencies are studied.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Fuzhen Pang ◽  
Ruidong Huo ◽  
Haichao Li ◽  
Cong Gao ◽  
Xuhong Miao ◽  
...  

The wave-based method (WBM) is a feasible method which investigates the free vibration characteristics of orthotropic cylindrical shells under general boundary conditions. Based on Reissner–Naghid’s shell theory, the governing motion equation is established, and the displacement variables are transformed into wave functions formed to satisfy the governing equations. On the basis of the kinematic relationship between the force resultant and displacement vector, the overall matrix of the shell is established. Comparison studies of this paper with the solutions in the literatures were carried out to validate the accuracy of the present method. Furthermore, by analyzing some numerical examples, the free vibration characteristics of orthogonal anisotropic cylindrical shells under classical boundary conditions, elastic boundary conditions, and their combinations are studied. Also, the effects of the material parameter and geometric constant on the natural frequencies for the orthotropic circular cylindrical shell under general boundary conditions are discussed. The conclusions obtained can be used as data reference for future calculation methods.


Sign in / Sign up

Export Citation Format

Share Document