City-level variations in aerosol optical properties and aerosol type identification derived from long-term MODIS/Aqua observations in the Sichuan Basin, China

Urban Climate ◽  
2021 ◽  
Vol 38 ◽  
pp. 100886
Author(s):  
Hongke Cai ◽  
Yue Yang ◽  
Wei Luo ◽  
Quanliang Chen
2022 ◽  
Vol 2152 (1) ◽  
pp. 012001
Author(s):  
Heng Li

Abstract Increase of atmospheric aerosols has a profound impact on the Earth’s climate. It’s also one of the crucial factors that cuasesd more fequent air pollution events in China. Monthly average Aerosol Optical Depth (AOD) from MODIS and UltraViolet Absorbing aerosol Index (UVAI) from OMI during 2011 to 2019 are used to analyse the trend of absorption and total aerosol optical properties over three typical provinces of China, namely Shandong, Gansu and Guangdong provinces. The results show the average annual AOD of the three provinces are all decreasing while UVAI rises during this period. In addition, the monthly variation of AOD and UVAI are also obviously different over these provinces. In particular, the peak value of AOD appeared in July and the trough appeared in December over Shandong Province. And the peak appeared in April over Gansu Province, but AOD decrease slower then over Shandong Province. And there were two peaks in April and August over Guangdong Province. For UVAI, the peaks over Shandong and Gansu provinces both occur in January, while that over Guangdong Province appears in March. Above mentioned differences in the long-term trend and monthly variation of AOD and UVAI might be closely related to the meteorological conditions and aerosol emission of these three provinces.


2020 ◽  
Vol 241 ◽  
pp. 104976 ◽  
Author(s):  
Antonio Donateo ◽  
Teresa Lo Feudo ◽  
Angela Marinoni ◽  
Claudia Roberta Calidonna ◽  
Daniele Contini ◽  
...  

2017 ◽  
Vol 17 (19) ◽  
pp. 12097-12120 ◽  
Author(s):  
Lauren Schmeisser ◽  
Elisabeth Andrews ◽  
John A. Ogren ◽  
Patrick Sheridan ◽  
Anne Jefferson ◽  
...  

Abstract. Knowledge of aerosol size and composition is important for determining radiative forcing effects of aerosols, identifying aerosol sources and improving aerosol satellite retrieval algorithms. The ability to extrapolate aerosol size and composition, or type, from intensive aerosol optical properties can help expand the current knowledge of spatiotemporal variability in aerosol type globally, particularly where chemical composition measurements do not exist concurrently with optical property measurements. This study uses medians of the scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and single scattering albedo (SSA) from 24 stations within the NOAA/ESRL Federated Aerosol Monitoring Network to infer aerosol type using previously published aerosol classification schemes.Three methods are implemented to obtain a best estimate of dominant aerosol type at each station using aerosol optical properties. The first method plots station medians into an AAE vs. SAE plot space, so that a unique combination of intensive properties corresponds with an aerosol type. The second typing method expands on the first by introducing a multivariate cluster analysis, which aims to group stations with similar optical characteristics and thus similar dominant aerosol type. The third and final classification method pairs 3-day backward air mass trajectories with median aerosol optical properties to explore the relationship between trajectory origin (proxy for likely aerosol type) and aerosol intensive parameters, while allowing for multiple dominant aerosol types at each station.The three aerosol classification methods have some common, and thus robust, results. In general, estimating dominant aerosol type using optical properties is best suited for site locations with a stable and homogenous aerosol population, particularly continental polluted (carbonaceous aerosol), marine polluted (carbonaceous aerosol mixed with sea salt) and continental dust/biomass sites (dust and carbonaceous aerosol); however, current classification schemes perform poorly when predicting dominant aerosol type at remote marine and Arctic sites and at stations with more complex locations and topography where variable aerosol populations are not well represented by median optical properties. Although the aerosol classification methods presented here provide new ways to reduce ambiguity in typing schemes, there is more work needed to find aerosol typing methods that are useful for a larger range of geographic locations and aerosol populations.


2022 ◽  
Vol 22 (1) ◽  
pp. 561-575
Author(s):  
Jiaxing Sun ◽  
Zhe Wang ◽  
Wei Zhou ◽  
Conghui Xie ◽  
Cheng Wu ◽  
...  

Abstract. Atmospheric aerosols play an important role in the radiation balance of the earth–atmosphere system. However, our knowledge of the long-term changes in equivalent black carbon (eBC) and aerosol optical properties in China is very limited. Here we analyze the 9-year measurements of eBC and aerosol optical properties from 2012 to 2020 in Beijing, China. Our results showed large reductions in eBC by 71 % from 6.25 ± 5.73 µg m−3 in 2012 to 1.80 ± 1.54 µg m−3 in 2020 and 47 % decreases in the light extinction coefficient (bext, λ = 630 nm) of fine particles due to the Clean Air Action Plan that was implemented in 2013. The seasonal and diurnal variations of eBC illustrated the most significant reductions in the fall and at nighttime, respectively. ΔeBC / ΔCO also showed an annual decrease from ∼ 7 to 4 ng m−3 ppbv−1 and presented strong seasonal variations with high values in spring and fall, indicating that primary emissions in Beijing have changed significantly. As a response to the Clean Air Action Plan, single-scattering albedo (SSA) showed a considerable increase from 0.79 ± 0.11 to 0.88 ± 0.06, and mass extinction efficiency (MEE) increased from 3.2 to 3.8 m2 g−1. These results highlight the increasing importance of scattering aerosols in radiative forcing and a future challenge in visibility improvement due to enhanced MEE. Brown carbon (BrC) showed similar changes and seasonal variations to eBC during 2018–2020. However, we found a large increase of secondary BrC in the total BrC in most seasons, particularly in summer with the contribution up to 50 %, demonstrating an enhanced role of secondary formation in BrC in recent years. The long-term changes in eBC and BrC have also affected the radiative forcing effect. The direct radiative forcing (ΔFR) of BC decreased by 67 % from +3.36 W m−2 in 2012 to +1.09 W m−2 in 2020, and that of BrC decreased from +0.30 to +0.17 W m−2 during 2018–2020. Such changes might have important implications for affecting aerosol–boundary layer interactions and the improvement of future air quality.


Sign in / Sign up

Export Citation Format

Share Document