Analysing the efficiency of solar roads within settlement areas in Germany

Urban Climate ◽  
2021 ◽  
Vol 38 ◽  
pp. 100894
Author(s):  
Jacqueline Finn ◽  
Arne Leitte ◽  
Martin Fabisch ◽  
Sascha Henninger
Keyword(s):  
2010 ◽  
Vol 21 (1) ◽  
pp. 59-71 ◽  
Author(s):  
JESÚS CARO ◽  
DIEGO ONTIVEROS ◽  
MANUEL PIZARRO ◽  
JUAN M. PLEGUEZUELOS

SummaryBonelli’s Eagle Hieraaetus fasciatus and Golden Eagle Aquila chrysaetos are two declining species, in which floaters tend to be located outside of breeding territories during the dispersal period, in so-called settlement areas. We studied settlement areas for both these long-lived raptors in the southern Iberian Peninsula, to gain a better understanding of the ecological requirements of the eagles during their long pre-adult stage, a period accounting for around 80% of the species’ mortality. Eagle abundance was calculated by road censuses, and habitat characteristics of settlement and non-settlement areas compared by General Discriminant Analysis (GDA) and Logistic Regression (LR). The best model of GDA and LR incorporated the abundance of main prey for eagles (rabbits, partridges) and orchard surface area, and explained 100% of eagle presence; the best model selected by GDA also included habitat heterogeneity. Both eagles tended to share settlement areas in the southern Iberian Peninsula and, when they did not, the mean annual temperature and slope appeared to explain the segregation between the two species. Management measures for the conservation of both threatened species during the dispersal period should be focused on identifying settlement areas, maintaining high prey densities and maximum habitat heterogeneity.


2021 ◽  
Author(s):  
Mohammad A. Alam

This research focuses on the waste and environmental damage caused by mining activities and the impact that this has on settlement pattern of adjacent areas. This research identifies that mining cities are unique in their land use dynamics due to the physical attributes of mining sites and there impacts on human and nature. Using a method of three sequential approaches to understand the land use dynamics of mining cities the first study examines the physical attributes of mining sites, through the creation of a new data set that combines existing and abandoned sites from existing separate datasets, outlining production, proximity to settlement areas and water bodies to identify their degree of threat to human and nature. Secondly, a single case study of Copper Cliff, ON is used to investigate how mining activities and its changes interact with surrounding land uses through a Land mosaic-function-land change feedback model adapted from Richard T.T. Forman’s theory of land mosaic. The analysis then investigates the policy responses that are enacted to mitigate the mining activities with other land uses. The analysis identifies that the potential impact of mining activities is more prominent where mining waste production is higher and located at close proximity to settlement areas. However, although the growth pattern of settlement areas are often guided by the physical characteristics of mining sites, effective response of land use policies may stimulate positive changes of land use pattern.


2021 ◽  
Author(s):  
Felicia Akinyemi ◽  
Chinwe Ifejika Speranza

<p>Land system change is implicated in many sustainability challenges as its alteration impacts ecosystems and exacerbate the vulnerability of communities, particularly where livelihoods are largely dependent on natural resources. The production of a land use-cover map for year 2020 extended the time-series for assessing land use-cover dynamics over a period of 45 years (1975-2020). The case of Nigeria is examined as the land area encompass several agro-ecological zones. The classification scheme countries utilise for estimating Land Degradation Neutrality baseline and monitoring of the Sustainable Development Goal 15.3.1 indicator (proportion of degraded land over total land area) was used, based on seven land use-cover classes (tree-covered area, grassland, cropland, wetland, artificial surface area, otherland, and waterbody). Severity of land degradation, computed as changes in vegetation productivity using the Enhanced Vegetation Index (EVI), as well as changes in ecosystem service values were examined across the different land use-cover types, in areas of change and persistence. Land degradation is most severe in settlement areas and wetlands with declining trends in 34% of settlement areas and 29% in wetlands respectively. About 19% of tree-covered areas experienced increasing trends. In some areas of land use-cover persistence, vegetation productivity declined despite no land change occurring. For example, vegetation productivity declined in about 35% and 9% of persistent wetlands and otherland respectively between 2000 and 2020, whereas there was improvement in 22% of persistent grasslands, 18% of persistent otherlands and 12% of persistent croplands. In land change areas, about 12% and 8% of wetlands and tree-covered areas had declining vegetation trends respectively, whereas it improved the most in croplands (20%), and grasslands (16%). With some wetland, cropland and otherland areas degrading the most, protecting these critical ecosystems is required to sustain their functions and services. The finding that vegetation productivity may decline in areas of persistence underscores the importance of intersecting land use-cover (in terms of persistence and change) with vegetation productivity to identify pathways for enhancing ecological sustainability.</p>


2020 ◽  
Vol 26 (2) ◽  
pp. 413-424
Author(s):  
Heinrich Härke

Abstract The Anglo-Saxon immigration of the 5th-6th centuries AD led to a dual contact situation in the British Isles: with the native inhabitants of the settlement areas in south-eastern England (internal contact zone), and with the Celtic polities outside the Anglo-Saxon areas (external contact zone). In the internal contact zone, social and ethnogenetic processes resulted in a complete acculturation of the natives by the 9th century. By contrast, the external contact zone between Anglo-Saxon and Celtic polities resulted in a cultural and linguistic split right across the British Isles up to the 7th century, and arguably well beyond. The cultural boundary between these two domains became permeable in the 7th century as a consequence of Anglo-Saxon Christianization which created a northern communication zone characterized by a distinct art style (Insular Art). In the early medieval British Isles, contact resulting from migration did not lead to cultural exchange for about two centuries, and it took profound ideological and social changes to establish a basis for communication.


Sign in / Sign up

Export Citation Format

Share Document