Urban forested parks and tall tree canopies contribute to macrolichen epiphyte biodiversity in urban landscapes

2018 ◽  
Vol 32 ◽  
pp. 133-142 ◽  
Author(s):  
Hannah M. Prather ◽  
Sarah M. Eppley ◽  
Todd N. Rosenstiel
2010 ◽  
Vol 36 (3) ◽  
pp. 101-109
Author(s):  
Jennie Condra ◽  
Cristina Brady ◽  
Daniel Potter

Twenty genotypes of landscape-suitable Dutch elm disease-resistant elms (Ulmus spp.) were evaluated in a replicated field study for resistance to multiple insect pests in Lexington, Kentucky, U.S. The European elm flea weevil (EEFW), Orchestes alni, a recentlyintroduced pest that disfigures elms by leaf-mining and adult feeding, was found as a new state record so its feeding preferences and life history were monitored. U. parvifolia and U. propinqua, originally from Japan, were relatively resistant to Japanese beetles, and U. americana was generally less susceptible than most hybrids. Agromyza aristata, a serpentine leaf-mining fly, favored American elms, whereas Kaliofenusa ulmi a blotch-mining sawfly, and aphid (Tetraneura nigriabdominalis) pouch galls were uncommon on American and Asian elms but abundant on certain hybrids. EEFW infested all elms but at highest densities, (>20 mines per 30 cm shoot and >85 adult feeding holes per leaf), on certain hybrids. American elms, especially ‘Jefferson’, were somewhat less susceptible. EEFW laid eggs in expanding leaves; mines were initiated in late April and completed by mid- to late- May. Newly-emerged adults extensively damaged leaves in late May and June but nearly disappeared from tree canopies by mid-July. Implications for re-introduction of elms into urban landscapes are discussed.


2020 ◽  
Vol 21 (3) ◽  
pp. 275-280
Author(s):  
Richard Martinson

1994 ◽  
Vol 36 (19-25) ◽  
pp. 487-500 ◽  
Author(s):  
M. Sterzyńska ◽  
A. Ślepowroński
Keyword(s):  

2009 ◽  
Author(s):  
Michael Greiner ◽  
Bradley D. Duncan ◽  
Matthew P. Dierking

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 553d-553
Author(s):  
C.R. Unrath

Historically, most airblast chemical applications to apple orchards used a single “average” water volume, resulting in variability of coverage with tree size and also the greatest variable in chemical thinning. This coverage variability can be eliminated by properly quantifying the tree canopy, as tree row volume (TRV), and relating that volume to airblast water rate for adequate coverge. Maximum typical tree height, cross-row limb spread, and between-row spacing are used to quantify the TRV. Further refinement is achieved by adjusting the water volume for tree canopy density. The North Carolina TRV model allows a density adjustment from 0.7 gal/1000 ft3 of TRV for young, very open tree canopies to 1.0 gal/1000 ft3 of TRV for large, thick tree canopies to deliver a full dilute application for maximum water application (to the point of run-off). Most dilute pesticide applications use 70% of full dilute to approach the point of drip (pesticide dilute) to not waste chemicals and reduce non-target environmental exposure. From the “chemical load” (i.e., lb/acre) calculated for the pesticide dilute application, the proper chemical load for lower (concentrate) water volumes can be accurately determined. Another significant source of variability is thinner application response is spray distribution to various areas of the tree. This variability is related to tree configuration, light, levels, fruit set, and natural thinning vs. the need for chemical thinning. Required water delivery patterns are a function of tree size, form, spacing, and density, as well as sprayer design (no. of nozzles and fan size). The TRV model, density adjustments, and nozzle patterns to effectively hit the target for uniform crop load will be addressed.


Author(s):  
Oksana Sadkovskaya

One of major factors of deterioration in a microclimate of urban development in the conditions of the Rostov region, is degradation of landscapes owing to violation of water balance of the territory. In article the main reasons for violation of water balance which included natural features of the region, a consequence of anthropogenic influence, climatic changes, etc. are considered. Examples from the world practice of urban planning, which show the relevance and effectiveness of compensation for the effects of anthropogenic im-pacts and climate change using planning methods, are given. The experience of the United States, the Nether-lands, Canada and other countries that use water-saving technologies in planning is considered. The rela-tionship of urban planning and the formation of sustainable urban landscapes is shown. The integration of water-saving technologies into the urban environment can be a means of optimizing landscapes and a means of creating unique urban spaces. Reclamation of the urban landscape of low-rise buildings is a necessary step in creating a modern and comfortable urban environment in the conditions of the Rostov region. Meth-ods are proposed to compensate for negative changes in urban landscapes that can be applied at the stage of urban planning. As well as the proposed methods can be applied in the reconstruction of urban low-rise buildings. The considered methods concern not only urban landscapes, but also agricultural landscapes that surround small and medium-sized cities of the Rostov region. In article the author's concept of the organiza-tion of the low housing estate on a basis Urban- facies is submitted. Planning methods of regulation of water balance of the territory on the basis of models the ecological protective of landscapes are offered: an ecolog-ical core, an ecological corridor and an ecological barrier and also analogs from town-planning practice are considered. The reclamation of urban landscapes based on urban planning methods for regulating the water balance of the territory will allow creating unique urban spaces that are resistant to local climatic conditions and the possible consequences of climate change.


Sign in / Sign up

Export Citation Format

Share Document