Effects of Multiple Photon Scattering in Deciduous Tree Canopies

2009 ◽  
Author(s):  
Michael Greiner ◽  
Bradley D. Duncan ◽  
Matthew P. Dierking
2009 ◽  
Vol 48 (32) ◽  
pp. 6159 ◽  
Author(s):  
Michael A. Greiner ◽  
Bradley D. Duncan ◽  
Matthew P. Dierking

1999 ◽  
Vol 29 (5) ◽  
pp. 547-553 ◽  
Author(s):  
Erik Næsset

One 6-channel and two 12-channel single frequency GPS receivers observing C/A (course/acquisition) code and carrier phase were tested to determine positional point accuracies under conifer and deciduous tree canopies. Positional accuracies were determined for 38 subcanopy sites by differential processing of C/A code observations only and combined use of C/A code and carrier phase. Observation periods of 2.5-30 min were evaluated. Mean positional accuracy ranged from 1.17 to 3.70 m for the 12-channel receivers based on 2.5-30 min of observation of C/A code. Mean accuracy ranged from 0.79 to 2.25 m for combined use of C/A code and carrier phase. The accuracy was 7.34 m with 30 min of C/A code observations with the 6-channel receiver. With combined use of C/A code and carrier phase the mean accuracy of the 6-channel receiver increased to 0.98-2.44 m. The accuracy increased with decreasing basal area and improving geometric satellite distribution. The mean accuracy was significantly higher for the 12-channel receivers than for the 6-channel receiver and significantly higher by combined use of C/A code and carrier phase than use of C/A code only.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 575a-575
Author(s):  
Frank J. Peryea

Boron (B) is an essential micronutrient that is often in inadequate supply in many deciduous tree fruit orchards and must therefore be added as fertilizer. It can also occur at phytotoxic levels because of over-fertilization, use of high-B irrigation water, or naturally in arid soils that are natively high in B. Tree B status is usually characterized by leaf analysis although other diagnostic criteria are being evaluated. Several tests are used to characterize soil B status. Symptoms of B deficiency include blossom blast, poor fruit set and development, shortened internodes, terminal bud death, and shoot dieback. To ameliorate deficiency, B fertilizer may be broadcast or sprayed over the soil surface or sprayed on tree canopies. In some regions, maintenance applications of B fertilizer are made to prevent development of B deficiency. Sodium borates or orthoboric acid are usually used. Fertilizer rates and timing vary with location and farming practices. Symptoms of B excess include reduced or no yield, impaired fruit quality, leaf marginal chlorosis and necrosis, defoliation, and shoot dieback. Boron toxicity is alleviated by leaching B-enriched soil to move B below the root zone.


1995 ◽  
Vol 95 (3) ◽  
pp. 399-408 ◽  
Author(s):  
Elena Toll ◽  
Federico J. Castillo ◽  
Pierre Crespi ◽  
Michele Crevecoeur ◽  
Hubert Greppin

2020 ◽  
Vol 2020 (14) ◽  
pp. 306-1-306-6
Author(s):  
Florian Schiffers ◽  
Lionel Fiske ◽  
Pablo Ruiz ◽  
Aggelos K. Katsaggelos ◽  
Oliver Cossairt

Imaging through scattering media finds applications in diverse fields from biomedicine to autonomous driving. However, interpreting the resulting images is difficult due to blur caused by the scattering of photons within the medium. Transient information, captured with fast temporal sensors, can be used to significantly improve the quality of images acquired in scattering conditions. Photon scattering, within a highly scattering media, is well modeled by the diffusion approximation of the Radiative Transport Equation (RTE). Its solution is easily derived which can be interpreted as a Spatio-Temporal Point Spread Function (STPSF). In this paper, we first discuss the properties of the ST-PSF and subsequently use this knowledge to simulate transient imaging through highly scattering media. We then propose a framework to invert the forward model, which assumes Poisson noise, to recover a noise-free, unblurred image by solving an optimization problem.


1994 ◽  
Vol 36 (19-25) ◽  
pp. 487-500 ◽  
Author(s):  
M. Sterzyńska ◽  
A. Ślepowroński
Keyword(s):  

2003 ◽  
Vol 154 (12) ◽  
pp. 498-503 ◽  
Author(s):  
Ingo Burgert

Three investigations into the mechanical relevance of wood rays were combined for this article. The main objective was to show, that, apart from physiological functions, rays also significantly influence the radial strength and stiffness of wood. In the first approach twelve deciduous tree species with various proportions of fractions of rays were examined for their transverse tensile strength and stiffness. The second approach was based on the comparison of the radial mechanical properties of wood with a very high proportion of fraction of rays and beech wood with a normal volume. In these two investigations the mechanical relevance of rays could only be deduced indirectly. By isolating big rays of beech and carrying out tensile tests on the tissue, we found direct evidence for the mechanical relevance. The results are discussed with regard to their biomechanical relevance. The importance of a radial reinforcement for the wood is underlined. Moreover, the principle of multi-functionality in nature is emphasized in keeping with a possible transfer of biological design to technical solutions.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 553d-553
Author(s):  
C.R. Unrath

Historically, most airblast chemical applications to apple orchards used a single “average” water volume, resulting in variability of coverage with tree size and also the greatest variable in chemical thinning. This coverage variability can be eliminated by properly quantifying the tree canopy, as tree row volume (TRV), and relating that volume to airblast water rate for adequate coverge. Maximum typical tree height, cross-row limb spread, and between-row spacing are used to quantify the TRV. Further refinement is achieved by adjusting the water volume for tree canopy density. The North Carolina TRV model allows a density adjustment from 0.7 gal/1000 ft3 of TRV for young, very open tree canopies to 1.0 gal/1000 ft3 of TRV for large, thick tree canopies to deliver a full dilute application for maximum water application (to the point of run-off). Most dilute pesticide applications use 70% of full dilute to approach the point of drip (pesticide dilute) to not waste chemicals and reduce non-target environmental exposure. From the “chemical load” (i.e., lb/acre) calculated for the pesticide dilute application, the proper chemical load for lower (concentrate) water volumes can be accurately determined. Another significant source of variability is thinner application response is spray distribution to various areas of the tree. This variability is related to tree configuration, light, levels, fruit set, and natural thinning vs. the need for chemical thinning. Required water delivery patterns are a function of tree size, form, spacing, and density, as well as sprayer design (no. of nozzles and fan size). The TRV model, density adjustments, and nozzle patterns to effectively hit the target for uniform crop load will be addressed.


Sign in / Sign up

Export Citation Format

Share Document