Measuring thermal conductivity of thin films by Scanning Thermal Microscopy combined with thermal spreading resistance analysis

2017 ◽  
Vol 175 ◽  
pp. 81-86 ◽  
Author(s):  
J. Juszczyk ◽  
A. Kaźmierczak-Bałata ◽  
P. Firek ◽  
J. Bodzenta
2013 ◽  
Vol 44 (11) ◽  
pp. 1029-1034 ◽  
Author(s):  
Séverine Gomès ◽  
Pascal Newby ◽  
Bruno Canut ◽  
Konstantinos Termentzidis ◽  
Olivier Marty ◽  
...  

2019 ◽  
Vol 677 ◽  
pp. 21-25 ◽  
Author(s):  
Yucheng He ◽  
Xiaoheng Li ◽  
Ling Ge ◽  
Qinyun Qian ◽  
Wenbing Hu

2006 ◽  
Vol 45 (3) ◽  
pp. 313-318 ◽  
Author(s):  
Chelakara S. Subramanian ◽  
Tahani Amer ◽  
Billy T. UpChurch ◽  
David W. Alderfer ◽  
Cecil Burkett ◽  
...  

2007 ◽  
Vol 1020 ◽  
Author(s):  
S. Budak ◽  
S. Guner ◽  
C. Muntele ◽  
C. C. Smith ◽  
B. Zheng ◽  
...  

AbstractSemiconducting â-Zn4Sb3and ZrNiSn-based half-heusler compound thin films were prepared by co-evaporation for the application of thermoelectric (TE) materials. High-purity solid zinc and antimony were evaporated by electron beam to grow the â-Zn4Sb3thin film while high-purity zirconium powder and nickel tin powders were evaporated by electron beam to grow the ZrNiSn-based half-heusler compound thin film. Rutherford backscattering spectrometry (RBS) was used to analyze the composition of the thin films. The grown thin films were subjected to 5 MeV Si ions bombardments for generation of nanostructures in the films. We measured the thermal conductivity, Seebeck coefficient, and electrical conductivity of these two systems before and after 5 MeV Si ions beam bombardments. The two material systems have been identified as promising TE materials for the application of thermal-to-electrical energy conversion, but the efficiency still limits their applications. The electronic energy deposited due to ionization in the track of MeV ion beam can cause localized crystallization. The nanostructures produced by MeV ion beam can cause significant change in both the electrical and the thermal conductivity of thin films, thereby improving the efficiency. We used the 3ù-method measurement system to measure the cross-plane thermal conductivity ,the Van der Pauw measurement system to measure the cross-plane electrical conductivity, and the Seebeck-coefficient measurement system to measure the cross-plane Seebeck coefficient. The thermoelectric figures of merit of the two material systems were then derived by calculations using the measurement results. The MeV ion-beam bombardment was found to decrease the thermal conductivity of thin films and increase the efficiency of thermal-to-electrical energy conversion.


Holzforschung ◽  
2008 ◽  
Vol 62 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Johannes Konnerth ◽  
David Harper ◽  
Seung-Hwan Lee ◽  
Timothy G. Rials ◽  
Wolfgang Gindl

Abstract Cross sections of wood adhesive bonds were studied by scanning thermal microscopy (SThM) with the aim of scrutinizing the distribution of adhesive in the bond line region. The distribution of thermal conductivity, as well as temperature in the bond line area, was measured on the surface by means of a nanofabricated thermal probe offering high spatial and thermal resolution. Both the thermal conductivity and the surface temperature measurements were found suitable to differentiate between materials in the bond region, i.e., adhesive, cell walls and embedding epoxy. Of the two SThM modes available, the surface temperature mode provided images with superior optical contrast. The results clearly demonstrate that the polyurethane adhesive did not cause changes of thermal properties in wood cell walls with adhesive contact. By contrast, cell walls adjacent to a phenol-resorcinol-formaldehyde adhesive showed distinctly changed thermal properties, which is attributed to the presence of adhesive in the wood cell wall.


2013 ◽  
Vol 556 ◽  
pp. 1-5 ◽  
Author(s):  
Andrzej Kusiak ◽  
Jiri Martan ◽  
Jean-Luc Battaglia ◽  
Rostislav Daniel

Sign in / Sign up

Export Citation Format

Share Document