scholarly journals In Vitro and Preliminary In Vivo Validation of Echo Particle Image Velocimetry in Carotid Vascular Imaging

2011 ◽  
Vol 37 (3) ◽  
pp. 450-464 ◽  
Author(s):  
Fuxing Zhang ◽  
Craig Lanning ◽  
Luciano Mazzaro ◽  
Alex J. Barker ◽  
Phillip E. Gates ◽  
...  
Author(s):  
Ryan A. Peck ◽  
Edver Bahena ◽  
Reza Jahan ◽  
Guillermo Aguilar ◽  
Hideaki Tsutsui ◽  
...  

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Alinaghi Salari ◽  
M. B. Shafii ◽  
Shapour Shirani

Microbubbles are broadly used as ultrasound contrast agents. In this paper we use a low-cost flow focusing microchannel fabrication method for preparing microbubble contrast agents by using some surface active agents and a viscosity enhancing material to obtain appropriate microbubbles with desired lifetime and stability for any in vitro infusion for velocity measurement. All the five parameters that govern the bubble size extract and some efforts are done to achieve the smallest bubbles by adding suitable surfactant concentrations. By using these microbubbles for the echo-particle image velocimetry method, we experimentally determine the velocity field of steady state and pulsatile pipe flows.


Author(s):  
Andrew M. Walker ◽  
Clifton R. Johnston ◽  
Gary M. Dobson

Currently, an echo particle image velocimetry (ePIV) system for the investigation of in vivo blood flow and shear stress is under development at the University of Calgary. To date, encouraging preliminary results have been obtained when comparing ePIV derived velocities to analytical solutions. However, large discrepancies were noted between our steady state ePIV derived velocities and velocities measured using pulse wave Doppler (PWD). Ultrasound beam thickness, off axis centerline measurements and PWD angle of interrogation likely account for the differences observed.


Sign in / Sign up

Export Citation Format

Share Document