scholarly journals Development and application of wellbore heat transfer model considering variable mass flow

Author(s):  
Jiangshuai Wang ◽  
Jun Li ◽  
Gonghui Liu ◽  
Shujie Liu ◽  
Meipeng Ren ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6543
Author(s):  
Mieczysław Dzierzgowski

Laboratory measurements and analyses conducted in a wide range of changes of water temperature and mass flow rate for different types of radiators allowed to provides limitations and assessment of the current radiators heat transfer model according to EN 442. The inaccuracy to determinate the radiator heat output according to EN 442, in case of low water mass flow rates may achieve up to 22.3% A revised New Extended Heat Transfer Model in Radiators NEHTMiRmd is general and suitable for different types of radiators both new radiators and radiators existing after a certain period of operation is presented. The NEHTMiRmd with very high accuracy describes the heat transfer processes not only in the nominal conditions—in which the radiators are designed, but what is particularly important also in operating conditions when the radiators water mass flow differ significantly from the nominal value and at the same time the supply temperature changes in the whole range radiators operating during the heating season. In order to prove that the presented new model NEHTMiRmd is general, the article presents numerous calculation examples for various types of radiators currently used. Achieved the high compatibility of the results of the simulation calculations with the measurement results for different types of radiators: iron elements (not ribbed), plate radiators (medium degree ribbed), convectors (high degree ribbed) in a very wide range of changes in the water mass flow rates and the supply temperature indicates that a verified NEHTMiRmd can also be used in designing and simulating calculations of the central heating installations, for the rational conversion of existing installations and district heating systems into low temperature energy efficient systems as well as to directly determine the actual energy efficiency, also to improve the indications of the heat cost allocators. In addition, it may form the basis for the future modification of the European Standards for radiator testing.


2018 ◽  
Vol 1 (1) ◽  
pp. 142-150
Author(s):  
Murat Tunc ◽  
Ayse Nur Esen ◽  
Doruk Sen ◽  
Ahmet Karakas

A theoretical post-dryout heat transfer model is developed for two-phase dispersed flow, one-dimensional vertical pipe in a post-CHF regime. Because of the presence of average droplet diameter lower bound in a two-phase sparse flow. Droplet diameter is also calculated. Obtained results are compared with experimental values. Experimental data is used two-phase flow steam-water in VVER-1200, reactor coolant system, reactor operating pressure is 16.2 MPa. On heater rod surface, dryout was detected as a result of jumping increase of the heater rod surface temperature. Results obtained display lower droplet dimensions than the experimentally obtained values.


2006 ◽  
Author(s):  
Filip Kitanoski ◽  
Wolfgang Puntigam ◽  
Martin Kozek ◽  
Josef Hager

2021 ◽  
Vol 71 ◽  
pp. 104456
Author(s):  
Zhuoran Zhang ◽  
Pratik Krishnan ◽  
Zeren Jiao ◽  
M. Sam Mannan ◽  
Qingsheng Wang

2016 ◽  
Vol 289 ◽  
pp. 371-380 ◽  
Author(s):  
Alexander Yu. Chebotarev ◽  
Andrey E. Kovtanyuk ◽  
Gleb V. Grenkin ◽  
Nikolai D. Botkin ◽  
Karl-Heinz Hoffmann

2005 ◽  
Vol 45 (9) ◽  
pp. 1291-1296 ◽  
Author(s):  
Hongming WANG ◽  
Guirong LI ◽  
Yucheng LEI ◽  
Yutao ZHAO ◽  
Qixun DAI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document