scholarly journals Verification and Improving the Heat Transfer Model in Radiators in the Wide Change Operating Parameters

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6543
Author(s):  
Mieczysław Dzierzgowski

Laboratory measurements and analyses conducted in a wide range of changes of water temperature and mass flow rate for different types of radiators allowed to provides limitations and assessment of the current radiators heat transfer model according to EN 442. The inaccuracy to determinate the radiator heat output according to EN 442, in case of low water mass flow rates may achieve up to 22.3% A revised New Extended Heat Transfer Model in Radiators NEHTMiRmd is general and suitable for different types of radiators both new radiators and radiators existing after a certain period of operation is presented. The NEHTMiRmd with very high accuracy describes the heat transfer processes not only in the nominal conditions—in which the radiators are designed, but what is particularly important also in operating conditions when the radiators water mass flow differ significantly from the nominal value and at the same time the supply temperature changes in the whole range radiators operating during the heating season. In order to prove that the presented new model NEHTMiRmd is general, the article presents numerous calculation examples for various types of radiators currently used. Achieved the high compatibility of the results of the simulation calculations with the measurement results for different types of radiators: iron elements (not ribbed), plate radiators (medium degree ribbed), convectors (high degree ribbed) in a very wide range of changes in the water mass flow rates and the supply temperature indicates that a verified NEHTMiRmd can also be used in designing and simulating calculations of the central heating installations, for the rational conversion of existing installations and district heating systems into low temperature energy efficient systems as well as to directly determine the actual energy efficiency, also to improve the indications of the heat cost allocators. In addition, it may form the basis for the future modification of the European Standards for radiator testing.

2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Harshdeep Sharma ◽  
Varun Goel

Abstract The performance models for high-temperature metallic recuperators considering one and two-dimensional heat transfer are presented. In one-dimensional model, an explicit expression to represent the effect of both the temperature and product of partial pressure and mean beam length on the emissivity is developed using emissivity charts. The effect of upstream and downstream surroundings is neglected. A two-dimensional heat transfer model is developed using zone method along with sum-of-gray-gases approximation to study the effect of upstream and downstream surroundings on performance. The results from the two models are compared. For lower values of inlet flue gas temperatures and higher mass flow rates, one-dimensional model predicts results within 5% of two-dimensional model. One-dimensional model provides a simplified solution for the assessment of recuperator performance but predicts the surface temperature distribution on a relatively lower side for higher inlet flue gas temperatures and low mass flow rates.


2018 ◽  
Vol 21 (8) ◽  
pp. 1286-1297 ◽  
Author(s):  
Antonio Gil ◽  
Andrés Omar Tiseira ◽  
Luis Miguel García-Cuevas ◽  
Tatiana Rodríguez Usaquén ◽  
Guillaume Mijotte

Each of the elements that make up the turbocharger has been gradually improved. In order to ensure that the system does not experience any mechanical failures or loss of efficiency, it is important to study which engine-operating conditions could produce the highest failing rate. Common failing conditions in turbochargers are mostly achieved due to oil contamination and high temperatures in the bearing system. Thermal management becomes increasingly important for the required engine performance. Therefore, it has become necessary to have accurate temperature and heat transfer models. Most thermal design and analysis codes need data for validation; often the data available fall outside the range of conditions the engine experiences in reality leading to the need to interpolate and extrapolate disproportionately. This article presents a fast three-dimensional heat transfer model for computing internal temperatures in the central housing for non-water cooled turbochargers and its direct validation with experimental data at different engine-operating conditions of speed and load. The presented model allows a detailed study of the temperature rise of the central housing, lubrication channels, and maximum level of temperature at different points of the bearing system of an automotive turbocharger. It will let to evaluate thermal damage done to the system itself and influences on the working fluid temperatures, which leads to oil coke formation that can affect the performance of the engine. Thermal heat transfer properties obtained from this model can be used to feed and improve a radial lumped model of heat transfer that predicts only local internal temperatures. Model validation is illustrated, and finally, the main results are discussed.


Author(s):  
Anika Steurer ◽  
Rico Poser ◽  
Jens von Wolfersdorf ◽  
Stefan Retzko

The present study deals with the application of the transient thermochromic liquid crystal (TLC) technique in a flow network of intersecting circular passages as a potential internal turbine component cooling geometry. The investigated network consists of six circular passages with a diameter d = 20mm that intersect coplanar at an angle θ = 40°, the innermost in three, the outermost in one intersection level. Two additional non-intersecting passages serve as references. Such a flow network entails specific characteristics associated with the transient TLC method that have to be accounted for in the evaluation process: the strongly curved surfaces, the mixing and mass flow redistribution at each intersection point, and the resulting gradients between the wall and passage centerline temperatures. All this impedes the choice of a representative fluid reference temperature, which results in deviations using established evaluation methods. An alternative evaluation approach is introduced, which is supported by computational results obtained from steady-state three-dimensional RANS simulations using the SST turbulence model. The presented analysis uncouples local heat transfer coefficients from actually measured local temperatures but uses the time information of the thermocouples instead that represents the fluid temperature step change and evolution along the passages. This experimental time information is transferred to the steady-state numerical bulk temperatures, which are finally used as local references to evaluate the transient TLC experiments. As effective local mass flow rates in the passage sections are considered, the approach eventually allows for a conclusion whether heat transfer is locally enhanced due to higher mass flow rates or the intersection effects.


2001 ◽  
Author(s):  
Hooman Rezaei ◽  
Abraham Engeda ◽  
Paul Haley

Abstract The objective of this work was to perform numerical analysis of the flow inside a modified single stage CVHF 1280 Trane centrifugal compressor’s vaneless diffuser and volute. Gambit was utilized to read the casing geometry and generating the vaneless diffuser. An unstructured mesh was generated for the path from vaneless diffuser inlet to conic diffuser outlet. At the same time a meanline analysis was performed corresponding to speeds and mass flow rates of the experimental data in order to obtain the absolute velocity and flow angle leaving the impeller for those operating conditions. These values and experimental data were used as inlet and outlet boundary conditions for the simulations. Simulations were performed in Fluent 5.0 for three speeds of 2000, 3000 and 3497 RPM and mass flow rates of minimum, medium and maximum. Results are in good agreement with the experimental ones and present the flow structures inside the vaneless diffuser and volute.


Author(s):  
Jiangshuai Wang ◽  
Jun Li ◽  
Gonghui Liu ◽  
Shujie Liu ◽  
Meipeng Ren ◽  
...  

Author(s):  
Youwei Lu ◽  
Prabhakar R. Pagilla

A heat transfer model that can predict the temperature distribution in moving flexible composite materials (webs) for various heating/cooling conditions is developed in this paper. Heat transfer processes are widely employed in roll-to-roll (R2R) machines that are used to perform processing operations, such as printing, coating, embossing, and lamination, on a moving flexible material. The goal is to efficiently transport the webs over heating/cooling rollers and ovens within such processes. One of the key controlled variables in R2R transport is web tension. When webs are heated or cooled during transport, the temperature distribution in the web causes changes in the mechanical and physical material properties and induces thermal strain. Tension behavior is affected by these changes and thermal strain. To determine thermal strain and material property changes, one requires the distribution of temperature in moving webs. A multilayer heat transfer model for composite webs is developed in this paper. Based on this model, temperature distribution in the moving web is obtained for the web transported on a heat transfer roller and in a web span between two adjacent rollers. Boundary conditions that reflect many types of heating/cooling of webs are considered and discussed. Thermal contact resistance between the moving web and heat transfer roller surfaces is considered in the derivation of the heat transfer model. Model simulations are conducted for a section of a production R2R coating and fusion process line, and temperature data from these simulations are compared with measured data obtained at key locations within the process line. In addition to determining thermal strain in moving webs, the model is valuable in the design of heating/cooling sources required to obtain a certain desired temperature at a specific location within the process line. Further, the model can be used in determining temperature dependent parameters and the selection of operating conditions such as web speed.


Author(s):  
Vahid Madadi ◽  
Touraj Tavakoli ◽  
Amir Rahimi

AbstractThe energy and exergy performance of a parabolic dish collector is investigated experimentally and theoretically. The effect of receiver type, inlet temperature and mass flow rate of heat transfer fluid (HTF), receiver temperature, receiver aspect ratio and solar radiation are investigated. To evaluate the effect of the receiver aperture area on the system performance, three aperture diameters are considered. It is deduced that the fully opened receivers have the greatest exergy and thermal efficiency. The cylindrical receiver has greater energy and exergy efficiency than the conical one due to less exergy destruction. It is found that the highest exergy destruction is due to heat transfer between the sun and the receivers and counts for 35 % to 60 % of the total wasted exergy. For three selected receiver aperture diameters, the exergy efficiency is minimum for a specified HTF mass flow rate. High solar radiation allows the system to work at higher HTF inlet temperatures. To use this system in applications that need high temperatures, in cylindrical and conical receivers, the HTF mass flow rates lower than 0.05 and 0.09 kg/s are suggested, respectively. For applications that need higher amounts of energy content, higher HTF mass flow rates than the above mentioned values are recommended.


2014 ◽  
Vol 1077 ◽  
pp. 118-123 ◽  
Author(s):  
Lubomír Klimeš ◽  
Pavel Charvát ◽  
Milan Ostrý ◽  
Josef Stetina

Phase change materials have a wide range of application including thermal energy storage in building structures, solar air collectors, heat storage units and exchangers. Such applications often utilize a commercially produced phase change material enclosed in a thin panel (container) made of aluminum. A parallel 1D heat transfer model of a container with phase change material was developed by means of the control volume and effective heat capacity methods. The parallel implementation in the CUDA computing architecture allows the model for running on graphics processing units which makes the model very fast in comparison to traditional models computed on a single CPU. The paper presents the model implementation and results of computational model benchmarking carried out with the use of high-level and low-level GPUs NVIDIA.


2014 ◽  
Author(s):  
Khashayar Teimoori ◽  
Ali M. Sadegh

Packing in cooling towers is commonly used in nuclear power plants and air conditioning systems. However their efficiency with respect to the inlet air flow rate and the temperature of the water has not been fully investigated. In this research, the efficiency of packing rotational speed with respect to the wet counter flow of a cooling tower is experimentally investigated. In our experimental studies, six elliptical wooden plates that are equally spaced are used as a packing tower. The packing area of 0.85 m2 is considered with the following rotor speed ranges: 0.5, 3.5, 10, 15 and 17 rpm. It is assumed that the water mass flow rate is proportional to the inlet air to the tower. Six mass flow rates starting from 0.2 to 2.8 kg/h and the inlet air and water temperatures of 27°C and 45°C, respectively, are considered. The results illustrate that for the range of 0 to 5 rpm of the packing rotational speed the cooling rate of water is increased 3% for the water flow rate of 2.8 kg/h, and 24% for the water flow rate of 0.4 kg/h. Additionally, as a result of the increased rotational speed from 5 to over 17 rpm the cooling rate at both maximum and minimum water mass flow rates are increased from 13.9 to 34.4 percent, respectively. Furthermore, the water outlet temperature is reduced from 8.6°C to 3.3°C in the least and the most mass flow rates leading to the increased speed from 5 to 17 rpm, respectively. The experimental relationship between the inlet air temperature and the rotational speed of the packing has been determined. Also, the inlet water temperature at the maximum flow rate has been decreased to 3.4 and at the least water mass flow rate it has been decreased to 29 percent for the range of rotational speed from 5 to over 17 rpm of the packing rotation. All the results are depicted in several curves to show the actual variations of the variables.


Sign in / Sign up

Export Citation Format

Share Document