Effect of viral membrane fusion activity on antibody induction by influenza H5N1 whole inactivated virus vaccine

Vaccine ◽  
2012 ◽  
Vol 30 (45) ◽  
pp. 6501-6507 ◽  
Author(s):  
Felix Geeraedts ◽  
Wouter ter Veer ◽  
Jan Wilschut ◽  
Anke Huckriede ◽  
Aalzen de Haan
PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e30898 ◽  
Author(s):  
Natalija Budimir ◽  
Anke Huckriede ◽  
Tjarko Meijerhof ◽  
Louis Boon ◽  
Emma Gostick ◽  
...  

2001 ◽  
Vol 82 (10) ◽  
pp. 2519-2529 ◽  
Author(s):  
J. M. Slack ◽  
G. W. Blissard

A number of viral membrane fusion proteins can be expressed alone on the surface of host cells, and then triggered to induce cell-to-cell fusion or syncytium formation. Although rapid and easily observed, syncytium formation is not easily quantified and differences in fusion activity are not easily distinguished or measured. To address this problem, we developed a rapid and quantitative cell-to-cell fusion system that is useful for comparative analysis and may be suitable for high throughput screening. In this system, expression of a reporter protein, enhanced green fluorescent protein (EGFP), is dependent on cell-to-cell fusion. Spodoptera frugiperda (Sf9) insect cells expressing a chimeric Lac repressor-IE1 protein were fused to Sf9 cells containing an EGFP reporter construct under the control of a responsive lac operator-containing promoter. Membrane fusion efficiency was measured from the resulting EGFP fluorescence activity. Sf9 cells expressing the Orgyia pseudotsugata multicapsid nucleopolyhedrovirus (OpMNPV) GP64 envelope fusion protein were used as a model to test this fusion assay. Subtle changes in fusion activities of GP64 proteins containing single amino acid substitutions in a putative membrane fusion domain were distinguished, and decreases in EGFP fluorescence corresponded to decreases in the hydrophobicity in the small putative membrane fusion domain.


Virology ◽  
2015 ◽  
Vol 479-480 ◽  
pp. 498-507 ◽  
Author(s):  
Stephen C. Harrison

2014 ◽  
Vol 1838 (1) ◽  
pp. 355-363 ◽  
Author(s):  
Pierre Bonnafous ◽  
Marie-Claire Nicolaï ◽  
Jean-Christophe Taveau ◽  
Michel Chevalier ◽  
Fabienne Barrière ◽  
...  

2000 ◽  
Vol 20 (6) ◽  
pp. 557-570 ◽  
Author(s):  
Danika L. LeDuc ◽  
Yeon-Kyun Shin

A number of different viral spike proteins, responsible for membrane fusion, show striking similarities in their core structures. The prospect of developing a general structure-based mechanism seems plausible in light of these newly determined structures. Influenza hemagglutinin (HA) is the best-studied fusion machine, whose action has previously been described by a hypothetical “spring-loaded” model. This model has recently been extended to explain the mechanism of other systems, such as HIV gp120–gp41. However, evidence supporting this idea is insufficient, requiring re-examination of the mechanism of HA-induced membrane fusion. Recent experiments with a shortened construct of HA, which is able to induce lipid mixing, have provided evidence for an alternative scenario for HA-induced membrane fusion and perhaps that of other viral systems.


Structure ◽  
2006 ◽  
Vol 14 (10) ◽  
pp. 1481-1487 ◽  
Author(s):  
Thorsten Kampmann ◽  
Daniela S. Mueller ◽  
Alan E. Mark ◽  
Paul R. Young ◽  
Bostjan Kobe

2019 ◽  
Vol 94 (6) ◽  
Author(s):  
Alexandra Y. Soare ◽  
Hagerah S. Malik ◽  
Natasha D. Durham ◽  
Tracey L. Freeman ◽  
Raymond Alvarez ◽  
...  

ABSTRACT Purinergic receptors are well-established modulators of inflammatory processes, primarily through detection of extracellular nucleotides that are released by dying or infected cells. Emerging literature has demonstrated that inhibition of these inflammatory receptors can block HIV-1 productive infection and HIV-1-associated inflammation. The specificity of receptor type and mechanism of interaction has not yet been determined. Here, we characterize the inhibitory activity of P2X1 receptor antagonists, NF279 and NF449, in cell lines, primary cells, and a variety of HIV-1 envelope (Env) clades. NF279 and NF449 blocked productive infection at the level of viral membrane fusion, with a range of inhibitory activities against different HIV-1 Env isolates. A mutant virus carrying a truncation deletion of the C-terminal tail of HIV-1 Env glycoprotein 41 (gp41) showed reduced sensitivity to P2X1 antagonists, indicating that the sensitivity of inhibition by these molecules may be modulated by Env conformation. In contrast, a P2X7 antagonist, A438079, had a limited effect on productive infection and fusion. NF279 and NF449 interfered with the ability of the gp120 variable regions 1 and 2 (V1V2)-targeted broadly neutralizing antibody PG9 to block productive infection, suggesting that these drugs may antagonize HIV-1 Env at gp120 V1V2 to block viral membrane fusion. Our observations indicate that P2X1 antagonism can inhibit HIV-1 replication at the level of viral membrane fusion through interaction with Env. Future studies will probe the nature of these compounds in inhibiting HIV-1 fusion and the development of small molecules to block HIV-1 entry via this mechanism. IMPORTANCE While effective treatment can lower the severe morbidity and mortality associated with HIV-1 infection, patients infected with HIV-1 suffer from significantly higher rates of noncommunicable comorbidities associated with chronic inflammation. Emerging literature suggests a key role for P2X1 receptors in mediating this chronic inflammation, but the mechanism is still unknown. Here, we demonstrate that HIV-1 infection is reduced by P2X1 receptor antagonism. This inhibition is mediated by interference with HIV-1 Env and can impact a variety of viral clades. These observations highlight the importance of P2X1 antagonists as potential novel therapeutics that could serve to block a variety of different viral clades with additional benefits for their anti-inflammatory properties.


Sign in / Sign up

Export Citation Format

Share Document