membrane fusion proteins
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 7)

H-INDEX

22
(FIVE YEARS 2)

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3043
Author(s):  
Ilya Zubarev ◽  
Dmitry Vladimirtsev ◽  
Maria Vorontsova ◽  
Igor Blatov ◽  
Konstantin Shevchenko ◽  
...  

The advancement of precision medicine critically depends on the robustness and specificity of the carriers used for the targeted delivery of effector molecules in the human body. Numerous nanocarriers have been explored in vivo, to ensure the precise delivery of molecular cargos via tissue-specific targeting, including the endocrine part of the pancreas, thyroid, and adrenal glands. However, even after reaching the target organ, the cargo-carrying vehicle needs to enter the cell and then escape lysosomal destruction. Most artificial nanocarriers suffer from intrinsic limitations that prevent them from completing the specific delivery of the cargo. In this respect, extracellular vesicles (EVs) seem to be the natural tool for payload delivery due to their versatility and low toxicity. However, EV-mediated delivery is not selective and is usually short-ranged. By inserting the viral membrane fusion proteins into exosomes, it is possible to increase the efficiency of membrane recognition and also ease the process of membrane fusion. This review describes the molecular details of the viral-assisted interaction between the target cell and EVs. We also discuss the question of the usability of viral fusion proteins in developing extracellular vesicle-based nanocarriers with a higher efficacy of payload delivery. Finally, this review specifically highlights the role of Gag and RNA binding proteins in RNA sorting into EVs.


Author(s):  
Ilya Zubarev ◽  
Dmitry Vladimirtsev ◽  
Maria Vorontsova ◽  
Igor Blatov ◽  
Konstantin Shevchenko ◽  
...  

The advancement of precision medicine critically depends on the robustness and specificity of the carriers used for the targeted delivery of effector molecules in the human body. Numerous nanocarriers have been explored in vivo, to ensure the precise delivery of molecular cargos via tissue-specific targeting, including the endocrine part of the pancreas, thyroid, and adrenal glands. However, even after reaching the target organ, the cargo-carrying vehicle needs to enter the cell and then escape from lysosomal destruction. Most of artificial nanocarriers suffer from intrinsic limitations that either prevent them from completing the specific delivery of the cargo. In this respect, extracellular vesicles (EVs) seem to be the natural tool for payload delivery due to their versatility and low toxicity. However, EV-mediated delivery is not selective and usually short-ranged. By inserting the viral membrane fusion proteins into exosomes, it is possible to increase the efficiency of membrane recognition and also ease the process of membrane fusion. This review describes the molecular details of the viral-assisted interaction between the target cell and extracellular vesicles. We also discuss the question of the usability of viral fusion proteins in developing extracellular vesicle-based nanocarriers with higher efficacy of payload delivery. Finally, this review specifically highlights the role of Gag and RNA binding proteins in RNA sorting into extracellular vesicles.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qianni Duan ◽  
Tong Liu ◽  
Cong Huang ◽  
Qingqing Shao ◽  
Yonggui Ma ◽  
...  

Chinese herbal prescription JieZe-1 is effective for genital herpes with no visible adverse effects clinically. It showed an excellent anti-HSV-2 effect in vitro. However, its mechanism of anti-HSV-2 effect in vivo remains unclear. This study was designed to evaluate the anti-HSV-2 effect of JieZe-1 and berberine in a genital herpes mouse model and explore the underlying mechanism. The fingerprint of JieZe-1 was determined by high-performance liquid chromatography. First, we optimized a mouse model of genital herpes. Next, the weight, symptom score, morphological changes, viral load, membrane fusion proteins, critical proteins of the Toll-like receptor signaling pathway, cytokines, and immune cells of vaginal tissue in mice at different time points were measured. Finally, we treated the genital herpes mouse model with JieZe-1 gel (2.5, 1.5, and 0.5 g/ml) and tested the above experimental indexes at 12 h and on the 9th day after modeling. JieZe-1 improved the symptoms, weight, and histopathological damage of genital herpes mice, promoted the keratin repair of tissues, and protected organelles to maintain the typical morphology of cells. It downregulated the expression of membrane fusion proteins, critical proteins of the Toll-like receptor signaling pathway, cytokines, and immune cells. The vaginal, vulvar, and spinal cord viral load and vaginal virus shedding were also significantly reduced. In summary, JieZe-1 shows significant anti-HSV-2 efficacy in vivo. The mechanism is related to the inhibition of membrane fusion, the Toll-like receptor signaling pathway, inflammatory cytokines, and cellular immunity. However, berberine, the main component of JieZe-1 monarch medicine, showed no efficacy at a concentration of 891.8 μM (0.3 mg/ml).


2021 ◽  
Author(s):  
Yuzhang Wang ◽  
Lucy Fallon ◽  
Lauren Raguette ◽  
Stephanie Budhan ◽  
Kellon Belfon ◽  
...  

SARS-CoV-2, the causative agent of the COVID-19 pandemic, is an enveloped RNA virus. Trimeric spike glycoproteins extend outward from the virion; these class I viral membrane fusion proteins mediate entry of the virus into a host cell and are the dominant antigen for immune response. Cryo-EM studies have generated a large number of structures for the spike either alone, or bound to the cognate receptor ACE2 or antibodies, with the three receptor binding domains (RBDs) seen closed, open, or in various combinations. Binding to ACE2 requires an open RBD, and is believed to trigger the series of dramatic conformational changes in the spike that lead to the shedding of the S1 subunit and transition of the spring-loaded S2 subunit to the experimentally observed post-fusion structure. The steps following ACE2 binding are poorly understood despite extensive characterization of the spike through X-ray, cryo-EM, and computation. Here, we use all-atom simulations, guided by analysis of 81 existing experimental structures, to develop a model for the structural and energetic coupling that connects receptor binding to activation of the membrane fusion machinery.


2020 ◽  
Author(s):  
Donald Benton ◽  
Antoni Wrobel ◽  
Penqi Xu ◽  
Chloë Roustan ◽  
Stephen Martin ◽  
...  

Abstract SARS-CoV-2 infection is initiated by virus binding to ACE2 cell surface receptors, followed by fusion of virus and cell membranes to release the virus genome into the cell. Both receptor binding and membrane fusion activities are mediated by the virus spike glycoprotein, S. As with other class I membrane fusion proteins, S is post-translationally cleaved, in this case by furin, into S1 and S2 components that remain associated following cleavage. Fusion activation following receptor binding is proposed to involve the exposure of a second proteolytic site (S2’), cleavage of which is required for the fusion peptide release. We have investigated the binding of ACE2 to the furin-cleaved form of SARS-CoV-2 S by cryoEM. We classify ten different molecular species including the unbound, closed spike trimer, the fully open ACE2-bound trimer, and dissociated monomeric S1 bound to ACE2. The ten structures describe sequential ACE2 binding events which destabilise the spike trimer, progressively opening up, and out, the individual S1 components. The opening process reduces S1 contacts with each other and un-shields the trimeric S2 core, priming fusion activation and dissociation of ACE2-bound S1 monomers. The structures also reveal refolding of one of the S1 subdomains, following ACE2 binding, that disrupts interactions with S2, notably involving Asp614, leading to destabilisation of the structure of S2 proximal to the secondary (S2’) cleavage site.


2019 ◽  
Vol 6 (1) ◽  
pp. 341-363 ◽  
Author(s):  
Roy Duncan

With no limiting membrane surrounding virions, nonenveloped viruses have no need for membrane fusion to gain access to intracellular replication compartments. Consequently, nonenveloped viruses do not encode membrane fusion proteins. The only exception to this dogma is the fusogenic reoviruses that encode fusion-associated small transmembrane (FAST) proteins that induce syncytium formation. FAST proteins are the smallest viral membrane fusion proteins and, unlike their enveloped virus counterparts, are nonstructural proteins that evolved specifically to induce cell-to-cell, not virus-cell, membrane fusion. This distinct evolutionary imperative is reflected in structural and functional features that distinguish this singular family of viral fusogens from all other protein fusogens. These rudimentary fusogens comprise specific combinations of different membrane effector motifs assembled into small, modular membrane fusogens. FAST proteins offer a minimalist model to better understand the ubiquitous process of protein-mediated membrane fusion and to reveal novel mechanisms of nonenveloped virus dissemination that contribute to virulence.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Kamel El Omari ◽  
Sai Li ◽  
Abhay Kotecha ◽  
Thomas S. Walter ◽  
Eduardo A. Bignon ◽  
...  

2018 ◽  
Vol 92 (22) ◽  
Author(s):  
Rohit Kongari ◽  
Jeffrey Snowden ◽  
Joel D. Berry ◽  
Ry Young

ABSTRACTSpanins are bacteriophage lysis proteins responsible for disruption of the outer membrane, the final step of Gram-negative host lysis. The absence of spanins results in a terminal phenotype of fragile spherical cells. The phage T1 employs a unimolecular spanin gp11that has an N-terminal lipoylation signal and a C-terminal transmembrane domain. Upon maturation and localization, gp11ends up as an outer membrane lipoprotein with a C-terminal transmembrane domain embedded in the inner membrane, thus connecting both membranes as a covalent polypeptide chain. Unlike the two-component spanins encoded by most of the other phages, including lambda, the unimolecular spanins have not been studied extensively. In this work, we show that the gp11mutants lacking either membrane localization signal were nonfunctional and conferred a partially dominant phenotype. Translation from internal start sites within the gp11coding sequence generated a shorter product which exhibited a negative regulatory effect on gp11function. Fluorescence spectroscopy time-lapse videos of gp11-GFP expression showed gp11accumulated in distinct punctate foci, suggesting localized clusters assembled within the peptidoglycan meshwork. In addition, gp11was shown to mediate lysis in the absence of holin and endolysin function when peptidoglycan density was depleted by starvation for murein precursors. This result indicates that the peptidoglycan is a negative regulator of gp11function. This supports a model in which gp11acts by fusing the inner and outer membranes, a mode of action analogous to but mechanistically distinct from that proposed for the two-component spanin systems.IMPORTANCESpanins have been proposed to fuse the cytoplasmic and outer membranes during phage lysis. Recent work with the lambda spanins Rz-Rz1, which are similar to class I viral fusion proteins, has shed light on the functional domains and requirements for two-component spanin function. Here we report, for the first time, a genetic and biochemical approach to characterize unimolecular spanins, which are structurally and mechanistically different from two-component spanins. Considering similar predicted secondary structures within the ectodomains, unimolecular spanins can be regarded as a prokaryotic version of type II viral membrane fusion proteins. This study not only adds to our understanding of regulation of phage lysis at various levels but also provides a prokaryotic genetically tractable platform for interrogating class II-like membrane fusion proteins.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Faraz M. Harsini ◽  
Sukanya Chebrolu ◽  
Kerry L. Fuson ◽  
Mark A. White ◽  
Anne M. Rice ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Elena Khazina ◽  
Oliver Weichenrieder

LINE-1 (L1) is an autonomous retrotransposon, which acted throughout mammalian evolution and keeps contributing to human genotypic diversity, genetic disease and cancer. L1 encodes two essential proteins: L1ORF1p, a unique RNA-binding protein, and L1ORF2p, an endonuclease and reverse transcriptase. L1ORF1p contains an essential, but rapidly evolving N-terminal portion, homo-trimerizes via a coiled coil and packages L1RNA into large assemblies. Here, we determined crystal structures of the entire coiled coil domain of human L1ORF1p. We show that retrotransposition requires a non-ideal and metastable coiled coil structure, and a strongly basic L1ORF1p amino terminus. Human L1ORF1p therefore emerges as a highly calibrated molecular machine, sensitive to mutation but functional in different hosts. Our analysis rationalizes the locally rapid L1ORF1p sequence evolution and reveals striking mechanistic parallels to coiled coil-containing membrane fusion proteins. It also suggests how trimeric L1ORF1p could form larger meshworks and indicates critical novel steps in L1 retrotransposition.


Sign in / Sign up

Export Citation Format

Share Document