Immune responses of recombinant adenovirus co-expressing VP1 of foot-and-mouth disease virus and porcine interferon α in mice and guinea pigs

2008 ◽  
Vol 124 (3-4) ◽  
pp. 274-283 ◽  
Author(s):  
Yijun Du ◽  
Jianjun Dai ◽  
Yufeng Li ◽  
Congzhi Li ◽  
Jing Qi ◽  
...  
Intervirology ◽  
2015 ◽  
Vol 58 (3) ◽  
pp. 190-196 ◽  
Author(s):  
Farahnaz Motamedi-Sedeh ◽  
Hoorieh Soleimanjahi ◽  
Amir Reza Jalilian ◽  
Homayoon Mahravani ◽  
Kamalodin Shafaee ◽  
...  

Objectives: Foot-and-mouth disease virus (FMDV) causes a highly contagious disease in cloven-hoofed animals and is the most damaging disease of livestock worldwide, leading to great economic losses. The aim of this research was the inactivation of FMDV type O/IRN/1/2007 to produce a gamma ray-irradiated (GRI) vaccine in order to immunize mice and guinea pigs. Methods: In this research, the Iranian isolated FMDV type O/IRN/1/2007 was irradiated by gamma ray to prepare an inactivated whole virus antigen and formulated as a GRI vaccine with unaltered antigenic characteristics. Immune responses against this vaccine were evaluated on mice and guinea pigs. Results: The comparison of the immune responses between the GRI vaccine and conventional vaccine did not show any significant difference in neutralizing antibody titer, memory spleen T lymphocytes or IFN-γ, IL-4, IL-2 and IL-10 concentrations (p > 0.05). In contrast, there were significant differences in all of the evaluated immune factors between the two vaccinated groups of mice and negative control mice (p < 0.05). The protective dose 50 for the conventional and GRI vaccines obtained were 6.28 and 7.07, respectively, which indicated the high potency of both vaccines. Conclusion: GRI vaccine is suitable for both routine vaccination and control of FMDV in emergency outbreaks.


2001 ◽  
Vol 46 (16) ◽  
pp. 1376-1379 ◽  
Author(s):  
Guangjin Li ◽  
Yingjie Li ◽  
Weiyao Yan ◽  
Quanxin Xu ◽  
Yongqing Wu ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Sreerupa Challa ◽  
Steven M. Szczepanek ◽  
Debra Rood ◽  
Roger W. Barrette ◽  
Lawrence K. Silbart

Peptides corresponding to the foot-and-mouth disease virus VP1 G-H loop are capable of inducing neutralizing antibodies in some species but are considered relatively poor immunogens, especially at mucosal surfaces. However, intranasal administration of antigens along with the appropriate delivery vehicle/adjuvant has been shown to induce mucosal immune responses, and bacterial enterotoxins have long been known to be effective in this regard. In the current study, two different carrier/adjuvant approaches were used to augment mucosal immunity to the FMDV O1BFS G-H loop epitope, in which the G-H loop was genetically coupled to theE. coliLT-B subunit and coexpressed with the LTA2 fragment (LTA2B-GH), or the nontoxic pseudomonas exotoxin A (ntPE) was fused to LTA2B-GH at LT-A2 to enhance receptor targeting. Only guinea pigs that were inoculated intranasally with ntPE-LTA2B-GH and LTA2B-GH induced significant anti-G-H loop IgA antibodies in nasal washes at weeks 4 and 6 when compared to ovalbumin or G-H loop immunized animals. These were also the only groups that exhibited G-H loop-specific antigen-secreting cells in the nasal mucosa. These data demonstrate that fusion of nonreplicating antigens to LTA2B and ntPE-LTA2B has the potential to be used as carriers/adjuvants to induce mucosal immune responses against infectious diseases.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Xinsheng Liu ◽  
Jianliang Lv ◽  
Yuzhen Fang ◽  
Peng Zhou ◽  
Yanzhen Lu ◽  
...  

Improving vaccine immunogenicity by targeting antigens to dendritic cells has recently emerged as a new design strategy in vaccine development. In this study, the VP1 gene of foot-and-mouth disease virus (FMDV) serotype A was fused with the gene encoding human immunodeficiency virus (HIV) membrane glycoprotein gp120 or C2-V3 domain of hepatitis C virus (HCV) envelope glycoprotein E2, both of which are DC-SIGN-binding glycoproteins. After codon optimization, the VP1 protein and the two recombinant VP1-gp120 and VP1-E2 fusion proteins were expressed in Sf9 insect cells using the insect cell-baculovirus expression system. Western blotting showed that the VP1 protein and two recombinant VP1-gp120 and VP1-E2 fusion proteins were correctly expressed in the Sf9 insect cells and had good reactogenicity. Guinea pigs were then immunized with the purified proteins, and the resulting humoral and cellular immune responses were analyzed. The VP1-gp120 and VP1-E2 fusion proteins induced significantly higher specific anti-FMDV antibody levels than the VP1 protein and stronger cell-mediated immune responses. This study provides a new perspective for the development of novel FMDV subunit vaccines.


Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 729
Author(s):  
Bo Yang ◽  
Xiaohui Zhang ◽  
Dajun Zhang ◽  
Jing Hou ◽  
GuoWei Xu ◽  
...  

Foot-and-mouth disease virus (FMDV) causes a highly contagious vesicular disease in cloven-hoofed livestock that results in severe consequences for international trade, posing a great economic threat to agriculture. The FMDV infection antagonizes the host immune responses via different signaling pathways to achieve immune escape. Strategies to escape the cell immune system are key to effective infection and pathogenesis. This review is focused on summarizing the recent advances to understand how the proteins encoded by FMDV antagonize the host innate and adaptive immune responses.


Sign in / Sign up

Export Citation Format

Share Document