mucosal immunity
Recently Published Documents


TOTAL DOCUMENTS

1464
(FIVE YEARS 305)

H-INDEX

81
(FIVE YEARS 13)

2022 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Evaggelia Liaskou ◽  
Mohammed Nabil Quraishi ◽  
Palak J. Trivedi

2022 ◽  
Vol 66 (6) ◽  
pp. 399-408
Author(s):  
S. S. Zainutdinov ◽  
G. F. Sivolobova ◽  
V. B. Loktev ◽  
G. V. Kochneva

Mucosal immunity is realized through a structural and functional system called mucose-associated lymphoid tissue (MALT). MALT is subdivided into parts (clusters) depending on their anatomical location, but they all have a similar structure: mucus layer, epithelial tissue, lamina propria and lymphoid follicles. Plasma cells of MALT produce a unique type of immunoglobulins, IgA, which have the ability to polymerize. In mucosal immunization, the predominant form of IgA is a secretory dimer, sIgA, which is concentrated in large quantities in the mucosa. Mucosal IgA acts as a first line of defense and neutralizes viruses efficiently at the portal of entry, preventing infection of epithelial cells and generalization of infection. To date, several mucosal antiviral vaccines have been licensed, which include attenuated strains of the corresponding viruses: poliomyelitis, influenza, and rotavirus. Despite the tremendous success of these vaccines, in particular, in the eradication of poliomyelitis, significant disadvantages of using attenuated viral strains in their composition are the risk of reactogenicity and the possibility of reversion to a virulent strain during vaccination. Nevertheless, it is mucosal vaccination, which mimics a natural infection, is able to induce a fast and effective immune response and thus help prevent and possibly stop outbreaks of many viral infections. Currently, a number of intranasal vaccines based on a new vector approach are successfully undergoing clinical trials. In these vaccines, the safe viral vectors are used to deliver protectively significant immunogens of pathogenic viruses. The most tested vector for intranasal vaccines is adenovirus, and the most significant immunogen is SARSCoV-2 S protein. Mucosal vector vaccines against human respiratory syncytial virus and human immunodeficiency virus type 1 based on Sendai virus, which is able to replicate asymptomatically in cells of bronchial epithelium, are also being investigated.


JCI Insight ◽  
2022 ◽  
Author(s):  
Mangalakumari Jeyanathan ◽  
Dominik K. Fritz ◽  
Sam Afkhami ◽  
Emilio Aguirre ◽  
Karen J. Howie ◽  
...  

2022 ◽  
Vol 2 ◽  
Author(s):  
Georgios N. Belibasakis ◽  
George Hajishengallis

The 2nd International Conference on Oral Mucosal Immunity and the Microbiome (OMIM) took place at the Grecotel Kos Imperial Hotel, Kos, Greece, between 25th and 30th September 2021, under the auspices of the Aegean Conferences. This has only been the second Aegean Conference of this thematic, the first one having taken place in 2018 in Crete, during the same period of the year. Given the hardships in travel and heightened infection transmission risks amid the COVID-19 pandemic, the Conference was well attended by 29 international speakers across the world. For many of the participants, this was the first conference travel in the post-pandemic era, and quite significant that it has taken place on the island of Hippocrates. Stringent regional health and safety regulations had to be followed to accomplish for this in-person Conference to take place. Frontiers in Oral Health has hosted papers from presentations of the Conference, whereas the present article serves as the proceedings of the Conference with summaries of the presentations.


2021 ◽  
Vol 6 (66) ◽  
Author(s):  
Dongwen Wu ◽  
Catherine H. Poholek ◽  
Saikat Majumder ◽  
Qixing Liu ◽  
Shankar K. Revu ◽  
...  

2021 ◽  
Vol 31 (6) ◽  
pp. 792-798
Author(s):  
Nadezhda O. Kryukova ◽  
Ekaterina B. Rakunova ◽  
M. P. Kostinov ◽  
Irina A. Baranova ◽  
Oxana A. Svitich

The main focus in the course of COVID-19 goes on assessing the overall immune response. The role of mucosal immunity in this disease has not been studied sufficiently.The study aimed to analyze published data about secretory IgA as a significant indicator of the mucosal immune response of the respiratory tract in the context of the COVID-19 pandemic.Methods. Articles were identified via PubMed bibliographic database. The time-span of research was two years (2020, 2021).Results. The search identified 54 articles. There is evidence that secretory IgA (sIgA) is the main antibody isotype of the mucosal immunity. It is produced in quantities significantly higher than those of all other isotypes of immunoglobulins combined. sIgA antibodies are effective against various pathogens, including the SARS-CoV-2 virus, due to mechanisms such as neutralization, suppression of adhesion to the mucosal surface and invasion of epithelial cells, agglutination and facilitating the removal of pathogenic microorganisms with the mucosal secretions. Virus-specific IgA antibodies in the blood serum are detected in patients with COVID-19 as early as two days after the first symptoms, while IgM or IgG class antibodies appear only after 5 days. We accessed the efficacy of intranasal immunization as to induction of predominant production of sIgA in the upper and lower respiratory tract.Conclusion. The current information on the local immune response of the respiratory mucosa is important for understanding the pathophysiological mechanisms of the disease, diagnosis, and development of new methods of treatment and prevention of COVID-19.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sean A. Nelson ◽  
Andrea J. Sant

Yearly administration of influenza vaccines is our best available tool for controlling influenza virus spread. However, both practical and immunological factors sometimes result in sub-optimal vaccine efficacy. The call for improved, or even universal, influenza vaccines within the field has led to development of pre-clinical and clinical vaccine candidates that aim to address limitations of current influenza vaccine approaches. Here, we consider the route of immunization as a critical factor in eliciting tissue resident memory (Trm) populations that are not a target of current licensed intramuscular vaccines. Intranasal vaccination has the potential to boost tissue resident B and T cell populations that reside within specific niches of the upper and lower respiratory tract. Within these niches, Trm cells are poised to respond rapidly to pathogen re-encounter by nature of their anatomic localization and their ability to rapidly deliver anti-pathogen effector functions. Unique features of mucosal immunity in the upper and lower respiratory tracts suggest that antigen localized to these regions is required for the elicitation of protective B and T cell immunity at these sites and will need to be considered as an important attribute of a rationally designed intranasal vaccine. Finally, we discuss outstanding questions and areas of future inquiry in the field of lung mucosal immunity.


Author(s):  
Swapan K. Chatterjee ◽  
Snigdha Saha ◽  
Maria Nilda M. Munoz

Coronavirus disease 2019 (COVID-19) emerges as an expeditiously growing pandemic, in the human population caused by the highly transmissible RNA virus severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2). Prognosis of SARS-CoV-2 infection predominantly occurs at the angiotensin-converting enzyme 2 receptor and transmembrane protease serine type 2 positive (ACE2 + TMPRSS2)+ epithelial cells of the mucosal surface like nasal, oral mucosae, and/or the conjunctival surface of the eye where it has interacted along with the immune system. The primary host response towards the pathogen starts from an immune microenvironment of nasopharynx-associated lymphoid tissue (NALT) and mucosa-associated lymphoid tissue (MALT). The presence of exhausted lymphocytes, lymphopenia, pneumonia and cytokine storm is the hallmark of COVID-19. The multifaceted nature of co-morbidity factors like obesity and type 2 diabetes and its effects on immunity can alter the pathogenesis of SARS-CoV-2 infection. Adipose tissue is a crucial endocrine organ that secretes a plethora of factors like adipokines, cytokines, and chemokines that have a profound impact on metabolism and augments the expression of mucosal pro-inflammatory cytokines, like tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and the interleukin-12 (IL-12)/IL-23. Mucosal immunization could be a superior approach to activate mucosal and systemic immune responses against pathogenic invasion at mucosal surface entry ports. Mucosal vaccines are also able to generate strong systemic humoral immunity—required to neutralize any virus particle that dodges the primary immune response. To develop an efficient vaccine against mucosal pathogens, considering the designing of the delivery route, immunomodulatory features, and adjuvants are very important. In this article, we further provide evidence to understand the significant role of mucosal immunity, along with secretory and circulating immunoglobulin A (IgA) antibodies in generating a novel mucosal vaccine against COVID-19. Moreover, along with mucosal vaccines, we should look for combination treatment strategies with plant bioactive molecules. Glycan-binding lectins against viral proteins for targeted activation of mucosal immune response are one of such examples. This might play a promising role to halt this emerging virus.


2021 ◽  
Author(s):  
Kaori Sano ◽  
Disha Bhavsar ◽  
Gagandeep Singh ◽  
Daniel Floda ◽  
Komal Srivastava ◽  
...  

AbstractMucosal immune responses are critical to prevent respiratory infections but it is unclear to what extent antigen specific mucosal secretory IgA (SIgA) antibodies are induced by mRNA vaccination in humans. We analyzed, therefore, paired serum and saliva samples from study participants with and without COVID-19 at multiple timepoints before and after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccination. Our results suggest that the level of mucosal SIgA responses induced by mRNA vaccination depend on pre-existing immunity. Indeed, vaccination induced only a weak mucosal SIgA response in individuals without pre-existing mucosal antibody responses to SARS-CoV-2 while SIgA induction after vaccination was efficient in COVID-19 survivors. Our data indicate that vaccinated seropositive individuals were able to swiftly induce relatively high anti-spike SIgA responses by boosting pre-existing mucosal immunity. In contrast, seronegative individuals did not have pre-existing anti-SARS-CoV-2 or cross-reacting anti-HCoV SIgA antibodies prior to vaccination, and, thus, little or no anti-SARS-CoV-2 SIgA antibodies were induced by vaccination in these individuals.


Sign in / Sign up

Export Citation Format

Share Document