scholarly journals Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge

Virology ◽  
2009 ◽  
Vol 383 (2) ◽  
pp. 348-361 ◽  
Author(s):  
Alexander Bukreyev ◽  
Andrea Marzi ◽  
Friederike Feldmann ◽  
Liqun Zhang ◽  
Lijuan Yang ◽  
...  
Virology ◽  
2009 ◽  
Vol 383 (2) ◽  
pp. 237-247 ◽  
Author(s):  
Joseph R. Francica ◽  
Meghan K. Matukonis ◽  
Paul Bates

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1603
Author(s):  
Joaquin Rodriguez Galvan ◽  
Brianna Donner ◽  
Cat Hoang Veseley ◽  
Patrick Reardon ◽  
Heather M. Forsythe ◽  
...  

The human parainfluenza virus 3 (HPIV3) poses a risk for pneumonia development in young children and immunocompromised patients. To investigate mechanisms of HPIV3 pathogenesis, we characterized the association state and host protein interactions of HPIV3 phosphoprotein (HPIV3 P), an indispensable viral polymerase cofactor. Sequence analysis and homology modeling predict that HPIV3 P possesses a long, disordered N-terminal tail (PTAIL) a coiled-coil multimerization domain (PMD), similar to the well-characterized paramyxovirus phosphoproteins from measles and Sendai viruses. Using a recombinantly expressed and purified construct of PMD and PTAIL, we show that HPIV3 P in solution is primarily an alpha-helical tetramer that is stable up to 60 °C. Pulldown and isothermal titration calorimetry experiments revealed that HPIV3 P binds the host hub protein LC8, and turbidity experiments demonstrated a new role for LC8 in increasing the solubility of HPIV3 P in the presence of crowding agents such as RNA. For comparison, we show that the multimerization domain of the Zaire Ebola virus phosphoprotein VP35 is also a tetramer and binds LC8 but with significantly higher affinity. Comparative analysis of the domain architecture of various virus phosphoproteins in the order Mononegavirales show multiple predicted and verified LC8 binding motifs, suggesting its prevalence and importance in regulating viral phosphoprotein structures. Our work provides evidence for LC8 binding to phosphoproteins with multiple association states, either tetrameric, as in the HPIV3 and Ebola phosphoproteins shown here, or dimeric as in rabies virus phosphoprotein. Taken together the data suggest that the association states of a virus-specific phosphoprotein and the complex formed by binding of the phosphoprotein to host LC8 are important regulators of viral function.


Vaccine ◽  
2007 ◽  
Vol 25 (3) ◽  
pp. 481-489 ◽  
Author(s):  
Catherine E. Greer ◽  
Fengmin Zhou ◽  
Harold S. Legg ◽  
Zequn Tang ◽  
Silvia Perri ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Junpei Ohtsuka ◽  
Masayuki Fukumura ◽  
Wakako Furuyama ◽  
Shujie Wang ◽  
Kenichiro Hara ◽  
...  

Abstract Ectopic protein with proper steric structure was efficiently loaded onto the envelope of the F gene-defective BC-PIV vector derived from human parainfluenza virus type 2 (hPIV2) by a reverse genetics method of recombinant virus production. Further, ectopic antigenic peptide was successfully loaded either outside, inside, or at both sides of the envelope of the vector. The BC-PIV vector harboring the Ebola virus GP gene was able to elicit neutralizing antibodies in mice. In addition, BC-PIV with antigenic epitopes of both melanoma gp100 and WT1 tumor antigen induced a CD8+ T-cell-mediated response in tumor-transplanted syngeneic mice. Considering the low pathogenicity and recurrent infections of parental hPIV2, BC-PIV can be used as a versatile vector with high safety for recombinant vaccine development, addressing unmet medical needs.


2017 ◽  
Vol 91 (10) ◽  
Author(s):  
Matthias Lingemann ◽  
Xueqiao Liu ◽  
Sonja Surman ◽  
Bo Liang ◽  
Richard Herbert ◽  
...  

ABSTRACT The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (CΔ170). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation. IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect against mucosal as well as systemic inoculation are needed. We evaluated a version of human parainfluenza virus type 1 (HPIV1) bearing a stabilized attenuating mutation in the P/C gene (CΔ170) as an intranasal vaccine vector to express the EBOV glycoprotein GP. We evaluated expression from two different genome positions (pre-N and N-P) and investigated the use of vector packaging signals. African green monkeys immunized with two doses of the vector expressing GP from the pre-N position developed high titers of GP neutralizing serum antibodies. The attenuated vaccine candidate is expected to be safe and immunogenic and is available for clinical development.


Sign in / Sign up

Export Citation Format

Share Document