green monkeys
Recently Published Documents


TOTAL DOCUMENTS

397
(FIVE YEARS 67)

H-INDEX

45
(FIVE YEARS 5)

2022 ◽  
Vol 178 ◽  
pp. 215-218
Author(s):  
Sumit Jamwal ◽  
Jennifer K. Blackburn ◽  
John D. Elsworth

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 77
Author(s):  
Lori A. Rowe ◽  
Brandon J. Beddingfield ◽  
Kelly Goff ◽  
Stephanie Z. Killeen ◽  
Nicole R. Chirichella ◽  
...  

In recent months, several SARS-CoV-2 variants have emerged that enhance transmissibility and escape host humoral immunity. Hence, the tracking of viral evolutionary trajectories is clearly of great importance. Little is known about SARS-CoV-2 evolution in nonhuman primate models used to test vaccines and therapies and to model human disease. Viral RNA was sequenced from rectal swabs from Chlorocebus aethiops (African green monkeys) after experimental respiratory SARS-CoV-2 infection. Two distinct patterns of viral evolution were identified that were shared between all collected samples. First, mutations in the furin cleavage site that were initially present in the virus as a consequence of VeroE6 cell culture adaptation were not detected in viral RNA recovered in rectal swabs, confirming the necessity of this motif for viral infection in vivo. Three amino acid changes were also identified; ORF 1a S2103F, and spike D215G and H655Y, which were detected in rectal swabs from all sampled animals. These findings are demonstrative of intra-host SARS-CoV-2 evolution and may identify a host-adapted variant of SARS-CoV-2 that would be useful in future primate models involving SARS-CoV-2 infection.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yunier Rodríguez-Álvarez ◽  
Lino Gerardo Batista-Roche ◽  
Alexey Llopiz-Arzuaga ◽  
Pedro Puente-Pérez ◽  
Rafael Martínez-Castillo ◽  
...  

Abstract Background Interleukin (IL)-15 is a proinflammatory T-cell growth factor overexpressed in several autoimmune diseases such as rheumatoid arthritis. Our initial strategy to neutralize the increased levels of IL-15 consisted in a vaccine candidate based on the recombinant modified human IL-15 (mhIL-15) mixed with the alum adjuvant. A previous study in non-human primates Macaca fascicularis has shown that vaccination induces neutralizing antibodies against native IL-15, without affecting animal behavior, clinical status, or the percentage of IL-15-dependent cell populations. However, the mhIL-15 used as an antigen was active in the IL-2-dependent cytotoxic T-cell line CTLL-2, which could hinder its therapeutic application. The current article evaluated the immunogenicity in African green monkeys of a vaccine candidate based on IL-15 mutant D8SQ108S, an inactive form of human IL-15. Results IL-15 D8SQ108S was inactive in the CTLL-2 bioassay but was able to competitively inhibit the biological activity of human IL-15. Immunization with 200 µg of IL-15 mutant combined with alum elicited anti-IL-15 IgG antibodies after the second and third immunizations. The median values of anti-IL-15 antibody titers were slightly higher than those generated in animals immunized with 200 µg of mhIL-15. The highest antibody titers were induced after the third immunization in monkeys vaccinated with 350 µg of IL-15 D8SQ108S. In addition, sera from immunized animals inhibited the biological activity of human IL-15 in CTLL-2 cells. The maximum neutralizing effect was observed after the third immunization in sera of monkeys vaccinated with the highest dose of the IL-15 mutant. These sera also inhibited the proliferative activity of simian IL-15 in the CTLL-2 bioassay and did not affect the IL-2-induced proliferation of the aforementioned T-cell line. Finally, it was observed that vaccination neither affects the animal behavior nor the general clinical parameters of immunized monkeys. Conclusion Immunization with inactive IL-15 D8SQ108S mixed with alum generated neutralizing antibodies specific for human IL-15 in African green monkeys. Based on this fact, the current vaccine candidate could be more effective than the one based on biologically active mhIL-15 for treating autoimmune disorders involving an uncontrolled overproduction of IL-15.


2021 ◽  
Author(s):  
Alyssa C Fears ◽  
Brandon J Beddingfield ◽  
Nicole R Chirichella ◽  
Nadia Slisarenko ◽  
Stephanie Z Killeen ◽  
...  

The novel coronavirus SARS-CoV-2 has caused a worldwide pandemic resulting in widespread efforts in development of animal models that recapitulate human disease for evaluation of medical countermeasures, and to dissect COVID-19 immunopathogenesis. We tested whether route of experimental infection substantially changes COVID-19 disease characteristics in two species (Macaca mulatta; rhesus macaques; RM, Chlorocebus atheiops; African green monkeys; AGM) of nonhuman primates. Species-specific cohorts of RM and AGM Rhesus macaques (Macaca mulatta, RMs) and African green monkeys (Chlorocebus aethiops, AGMs) were experimentally infected with homologous SARS-CoV-2 by either direct mucosal instillation or small particle aerosol in route-discrete subcohorts. Both species demonstrated equivalent infection initially by either exposure route although the magnitude and duration of viral loading was greater in AGMs than that of the RM. Clinical onset was nearly immediate (+1dpi) in mucosally-exposed cohorts whereas aerosol-infected animals began to show signs +7dpi. Myeloid cell responses indicative of the development of pulmonary scarring and extended lack of regenerative capacity in the pulmonary compartment was a conserved pathologic response in both species by either exposure modality. This pathological commonality may be useful in future anti-fibrosis therapeutic evaluations and expands our understanding of how SARS-CoV-2 infection leads to ARDS and functional lung damage.


2021 ◽  
Vol 12 ◽  
Author(s):  
Celeste Coleman ◽  
Lara A. Doyle-Meyers ◽  
Kasi E. Russell-Lodrigue ◽  
Nadia Golden ◽  
Breanna Threeton ◽  
...  

Understanding SARS-CoV-2 immune pathology is critical for the development of effective vaccines and treatments. Here, we employed unbiased serial whole-blood transcriptome profiling by weighted gene network correlation analysis (WGCNA) at pre-specified timepoints of infection to understand SARS-CoV-2-related immune alterations in a cohort of rhesus macaques (RMs) and African green monkeys (AGMs) presenting with varying degrees of pulmonary pathology. We found that the bulk of transcriptional changes occurred at day 3 post-infection and normalized to pre-infection levels by 3 weeks. There was evidence of coordination of transcriptional networks in blood (defined by WGCNA) and the nasopharyngeal SARS-CoV-2 burden as well as the absolute monocyte count. Pathway analysis of gene modules revealed prominent regulation of type I and type II interferon stimulated genes (ISGs) in both RMs and AGMs, with the latter species exhibiting a greater breadth of ISG upregulation. Notably, pathways relating to neutrophil degranulation were enriched in blood of SARS-CoV-2 infected AGMs, but not RMs. Our results elude to hallmark similarities as well as differences in the RM and AGM acute response to SARS-CoV-2 infection, and may help guide the selection of particular NHP species in modeling aspects of COVID-19 disease outcome.


2021 ◽  
Author(s):  
Lori A Rowe ◽  
Brandon J Beddingfield ◽  
Kelly Goff ◽  
Stephanie Z Killeen ◽  
Nicole R Chirichella ◽  
...  

In recent months, several SARS-CoV-2 variants have emerged that enhance transmissibility and escape host humoral immunity. Hence, the tracking of viral evolutionary trajectories is clearly of great importance. Little is known about SARS-CoV-2 evolution in nonhuman primate models used to test vaccines and therapies and to model human disease. Viral RNA was sequenced from rectal swabs from Chlorocebus aethiops (African green monkeys) after experimental respiratory SARS-CoV-2 infection. Two distinct patterns of viral evolution were identified that were shared between all collected samples. First, mutations in the furin cleavage site that were initially present in the virus as a consequence of VeroE6 cell culture adaptation were subsequently lost in virus recovered in rectal swabs, confirming the necessity of this motif for viral infection in vivo. Three amino acid changes were also identified; ORF 1a S2103F, and spike D215G and H655Y, that were detected in rectal swabs from all sampled animals. These finding are demonstrative of intra-host SARS-CoV-2 evolution unique to this nonhuman primate species and identifies a host-adapted variant of SARS-CoV-2 that may be useful in future development of primate disease models.


2021 ◽  
Author(s):  
Neeltje van Doremalen ◽  
Victoria Avanzato ◽  
Friederike Feldmann ◽  
Jonathan Schulz ◽  
Elaine Haddock ◽  
...  

Nipah virus (NiV) is a highly pathogenic and re-emerging virus which causes sporadic but severe infections in humans. Currently, no vaccines against NiV have been approved. We previously showed that ChAdOx1 NiV provides full protection against a lethal challenge with NiV Bangladesh (NiV-B) in hamsters. Here, we investigated the efficacy of ChAdOx1 NiV in the lethal African green monkeys (AGMs) NiV challenge model. AGMs were vaccinated either 4 weeks before challenge (prime vaccination), or 8 and 4 weeks before challenge with ChAdOx1 NiV (prime-boost vaccination). A robust humoral and cellular response was detected starting 14 days post initial vaccination. Upon challenge, control animals displayed a variety of signs and had to be euthanized between 5- and 7-days post inoculation. In contrast, vaccinated animals showed no signs of disease, and we were unable to detect infectious virus in all but one swab and all tissues. Importantly, no to limited antibodies against fusion protein or nucleoprotein IgG could be detected 42 days post challenge, suggesting that vaccination induced a very robust protective immune response preventing extensive virus replication.


Author(s):  
John H. McDonough ◽  
Joseph D. McMonagle ◽  
Benedict R. Capacio
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document