scholarly journals Three discontinuous loop nucleotides in the 3′ terminal stem-loop are required for Red clover necrotic mosaic virus RNA-2 replication

Virology ◽  
2009 ◽  
Vol 393 (2) ◽  
pp. 346-354 ◽  
Author(s):  
Ziming Weng ◽  
Zhongguo Xiong
Keyword(s):  
2003 ◽  
Vol 77 (22) ◽  
pp. 12113-12121 ◽  
Author(s):  
Hiroyuki Mizumoto ◽  
Masahiro Tatsuta ◽  
Masanori Kaido ◽  
Kazuyuki Mise ◽  
Tetsuro Okuno

ABSTRACT Red clover necrotic mosaic virus (RCNMV) is a member of the genus Dianthovirus and has a bipartite positive-sense genomic RNA with 3′ ends that are not polyadenylated. In this study, we show that both genomic RNA1 and RNA2 lack a 5′ cap structure and that uncapped in vitro transcripts of RCNMV RNA1 replicated to a level comparable to that for capped transcripts in cowpea protoplasts. Because the 5′ cap and 3′ poly(A) tail play important roles in the translation of many eukaryotic mRNAs, genomic RNAs of RCNMV should contain an element(s) responsible for 5′ cap- and poly(A) tail-independent translation of viral protein. By using a luciferase reporter assay system in vivo, we showed that the 3′ untranslated region (UTR) of RNA1 alone significantly enhanced translation of the luciferase reporter gene in the absence of the 5′ cap structure. Deletion studies revealed that the middle region (between nucleotides 3596 and 3732) in the 3′ UTR, designated the 3′ translation element of Dianthovirus RNA1 (3′TE-DR1), plays an important role in cap-independent translation. This region contained a stem-loop structure conserved among members of the genera Dianthovirus and Luteovirus. A five-base substitution in the loop abolished cap-independent translational activity, as reported for a luteovirus, indicating that this stem-loop is one of the functional structures in the 3′TE-DR1 involved in cap-independent translation. Finally, we suggest that cap-independent translational activity is required for RCNMV RNA1 replication in protoplasts.


2003 ◽  
Vol 77 (20) ◽  
pp. 11284-11289 ◽  
Author(s):  
A. Corina Vlot ◽  
John F. Bol

ABSTRACT The three genomic RNAs of alfalfa mosaic virus each contain a unique 5′ untranslated region (5′ UTR). Replacement of the 5′ UTR of RNA 1 by that of RNA 2 or 3 yielded infectious replicons. The sequence of a putative 5′ stem-loop structure in RNA 1 was found to be required for negative-strand RNA synthesis. A similar putative 5′ stem-loop structure is present in RNA 2 but not in RNA 3.


2003 ◽  
Vol 77 (10) ◽  
pp. 5703-5711 ◽  
Author(s):  
K. Sivakumaran ◽  
M. Hema ◽  
C. Cheng Kao

ABSTRACT The RNA replicase extracted from Brome mosaic virus (BMV)-infected plants has been used to characterize the cis-acting elements for RNA synthesis and the mechanism of RNA synthesis. Minus-strand RNA synthesis in vitro requires a structure named stem-loop C (SLC) that contains a clamped adenine motif. In vitro, there are several specific requirements for SLC recognition. We examined whether these requirements also apply to BMV replication in barley protoplasts. BMV RNA3s with mutations in SLC were transfected into barley protoplasts, and the requirements for minus- and plus-strand replication were found to correlate well with the requirements in vitro. Furthermore, previous analysis of replicase recognition of the Cucumber mosaic virus (CMV) and BMV SLCs indicates that the requirements in the BMV SLC are highly specific. In protoplasts, we found that BMV RNA3s with their SLCs replaced with two different CMV SLCs were defective for replication. In vitro results generated with the BMV replicase and minimal-length RNAs generally agreed with those of in vivo BMV RNA replication. To extend this conclusion, we determined that, corresponding with the process of infection, the BMV replicases extracted from plants at different times after infection have different levels of recognition of the minimal promoters for plus- and minus-strand RNA syntheses.


Virology ◽  
1993 ◽  
Vol 193 (1) ◽  
pp. 213-221 ◽  
Author(s):  
Z. Xiong ◽  
K.H. Kim ◽  
T.L. Kendall ◽  
S.A. Lommel

2006 ◽  
Vol 80 (21) ◽  
pp. 10743-10751 ◽  
Author(s):  
Toba A. M. Osman ◽  
Robert H. A. Coutts ◽  
Kenneth W. Buck

ABSTRACT Cereal yellow dwarf virus (CYDV) RNA has a 5′-terminal genome-linked protein (VPg). We have expressed the VPg region of the CYDV genome in bacteria and used the purified protein (bVPg) to raise an antiserum which was able to detect free VPg in extracts of CYDV-infected oat plants. A template-dependent RNA-dependent RNA polymerase (RdRp) has been produced from a CYDV membrane-bound RNA polymerase by treatment with BAL 31 nuclease. The RdRp was template specific, being able to utilize templates from CYDV plus- and minus-strand RNAs but not those of three unrelated viruses, Red clover necrotic mosaic virus, Cucumber mosaic virus, and Tobacco mosaic virus. RNA synthesis catalyzed by the RdRp required a 3′-terminal GU sequence and the presence of bVPg. Additionally, synthesis of minus-strand RNA on a plus-strand RNA template required the presence of a putative stem-loop structure near the 3′ terminus of CYDV RNA. The base-paired stem, a single-nucleotide (A) bulge in the stem, and the sequence of a tetraloop were all required for the template activity. Evidence was produced showing that minus-strand synthesis in vitro was initiated by priming by bVPg at the 3′ end of the template. The data are consistent with a model in which the RdRp binds to the stem-loop structure which positions the active site to recognize the 3′-terminal GU sequence for initiation of RNA synthesis by the addition of an A residue to VPg.


1988 ◽  
Vol 16 (17) ◽  
pp. 8587-8602 ◽  
Author(s):  
S.A. Lommel ◽  
M. Weston-Fina ◽  
Z. Xiong ◽  
G.P. Lomonossoff

Virology ◽  
2008 ◽  
Vol 381 (2) ◽  
pp. 277-286 ◽  
Author(s):  
Jason G. Powers ◽  
Tim L. Sit ◽  
Curtis Heinsohn ◽  
Carol G. George ◽  
Kook-Hyung Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document