scholarly journals An alanine residue in human parainfluenza virus type 3 phosphoprotein is critical for restricting excessive N0-P interaction and maintaining N solubility

Virology ◽  
2018 ◽  
Vol 518 ◽  
pp. 64-76 ◽  
Author(s):  
Shengwei Zhang ◽  
Qi Cheng ◽  
Chenxi Luo ◽  
Lei Yin ◽  
Yali Qin ◽  
...  
2000 ◽  
Vol 74 (24) ◽  
pp. 11792-11799 ◽  
Author(s):  
Maria-Arantxa Horga ◽  
G. Luca Gusella ◽  
Olga Greengard ◽  
Natalia Poltoratskaia ◽  
Matteo Porotto ◽  
...  

ABSTRACT Viral interference is characterized by the resistance of infected cells to infection by a challenge virus. Mechanisms of viral interference have not been characterized for human parainfluenza virus type 3 (HPF3), and the possible role of the neuraminidase (receptor-destroying) enzyme of the hemagglutinin-neuraminidase (HN) glycoprotein has not been assessed. To determine whether continual HN expression results in depletion of the viral receptors and thus prevents entry and cell fusion, we tested whether cells expressing wild-type HPF3 HN are resistant to viral infection. Stable expression of wild-type HN-green fluorescent protein (GFP) on cell membranes in different amounts allowed us to establish a correlation between the level of HN expression, the level of neuraminidase activity, and the level of protection from HPF3 infection. Cells with the highest levels of HN expression and neuraminidase activity on the cell surface were most resistant to infection by HPF3. To determine whether this resistance is attributable to the viral neuraminidase, we used a cloned variant HPF3 HN that has two amino acid alterations in HN leading to the loss of detectable neuraminidase activity. Cells expressing the neuraminidase-deficient variant HN-GFP were not protected from infection, despite expressing HN on their surface at levels even higher than the wild-type cell clones. Our results demonstrate that the HPF3 HN-mediated interference effect can be attributed to the presence of an active neuraminidase enzyme activity and provide the first definitive evidence that the mechanism for attachment interference by a paramyxovirus is attributable to the viral neuraminidase.


2008 ◽  
Vol 77 (2) ◽  
pp. 83-94 ◽  
Author(s):  
Hongxia Mao ◽  
Chandar S. Thakur ◽  
Santanu Chattopadhyay ◽  
Robert H. Silverman ◽  
Andrei Gudkov ◽  
...  

2021 ◽  
pp. 105053
Author(s):  
Fu-lu Chu ◽  
Hong-ling Wen ◽  
Gui-hua Hou ◽  
Bin Lin ◽  
Wen-qiang Zhang ◽  
...  

2013 ◽  
Vol 19 (9) ◽  
Author(s):  
Michihito Sasaki ◽  
Akihiro Ishii ◽  
Yasuko Orba ◽  
Yuka Thomas ◽  
Bernard M. Hang’ombe ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chaoliang Zhang ◽  
Kehan Zhang ◽  
Guangchao Zang ◽  
Tingting Chen ◽  
Nan Lu ◽  
...  

Human Parainfluenza Virus Type 3 (HPIV3) is one of the main pathogens that cause acute lower respiratory tract infections in infants and young children. However, there are currently no effective antiviral drugs and vaccines. Herein, we found that a natural compound, curcumin, inhibits HPIV3 infection and has antiviral effects on entry and replication of the virus life cycle. Immunofluorescence and western blotting experiments revealed that curcumin disrupts F-actin and inhibits viral inclusion body (IB) formation, thus inhibiting virus replication. Curcumin can also downregulate cellular PI4KB and interrupt its colocalization in viral IBs. This study verified the antiviral ability of curcumin on HPIV3 infection and preliminarily elucidated its influence on viral replication, providing a theoretical basis for antiviral drug development of HPIV3 and other parainfluenza viruses.


Sign in / Sign up

Export Citation Format

Share Document