Removal of probable human carcinogenic polycyclic aromatic hydrocarbons from contaminated water using molecularly imprinted polymer

2010 ◽  
Vol 44 (3) ◽  
pp. 681-688 ◽  
Author(s):  
Reddithota J. Krupadam ◽  
Muntazir S. Khan ◽  
Satish R. Wate
2021 ◽  
Vol 50 (1) ◽  
pp. 123-133
Author(s):  
Siti Nurul Umira Mohd Sabari ◽  
Saw Hong Loh ◽  
Sazlinda Kamaruzaman ◽  
Noorfatimah Yahaya ◽  
Wan Mohd Afiq Wan Mohd Khalik

Sample pre-treatment is often the bottleneck in an analytical process. Due to the drawbacks of conventional sample pre-treatment methods, microextraction utilizing lower amounts of adsorbents and organic solvents are therefore favoured. A micro-solid phase extraction (μ-SPE) technique coupled with gas chromatography-flame ionization detection (GC-FID) was successfully developed for the analysis of selected polycyclic aromatic hydrocarbons (PA Hs), namely phenanthrene, fluoranthene, and pyrene, in environmental water. In this study, μ-SPE techniques using C18 and molecularly imprinted polymer (MIP) membranes were optimized, validated, and applied to the analysis of selected PA Hs in environmental water samples. The analytical merits were compared, and the two methods were evaluated in terms of linearity, repeatability, and relative recovery. Under the optimal extraction conditions, both μ-SPE techniques using either C18 or MIP membranes as the adsorbents offered comparable ultratrace analysis of the selected PA Hs in the range of 0.003 to 0.01 μg L–1. The extraction strength of C18 membranes was superior to that of MIP membranes for the extraction of low molecular weights PA Hs from water in the presence of humic acid as a matrix factor. The C18membranes overcome the non-covalence interaction between PA Hs and humic acid and thus achieve better recovery.


RSC Advances ◽  
2016 ◽  
Vol 6 (60) ◽  
pp. 54702-54708 ◽  
Author(s):  
Mostafa Khajeh ◽  
Marzieh Sharifirad ◽  
Mousa Bohlooli ◽  
Mansour Ghaffari-Moghaddam

In this study, an efficient and sensitive magnetic molecularly imprinted polymer–silver nanoparticle (MMIPS) system was successfully synthesized.


2020 ◽  
Vol 24 (3) ◽  
pp. 459-465
Author(s):  
O.O. Ijaola ◽  
A.Y. Sangodoyin

Determination and remediation of pollutants such as polycyclic aromatic hydrocarbons (PAHs) have not being fully regulated in Nigeria; hence  contamination of surface water by such pollutant is a major concern. This study was designed to determine the level of selected PAHs in petroleum contaminated water using spectroscopic techniques and the efficacy of activated carbons made from Bambusa vulgaris and Oxytenanthera  vabyssinaca. Bambusa vulgaris and Oxytenanthera abyssinaca were carbonized at 350OC and activated with Phosphoric acid (CBV350OC H3PO4) and Potassium chloride (COA 350OC KCl) as dehydrating agent respectively. The adsorbents were then used to remediate PAHs in petroleum contaminated water. Liquid-Liquid extraction procedures were used for extracting selected PAHs from sampled solutions. The batch experiment was performed to study the adsorption capacity of adsorbents at 5hrs contact time. Analysis of PAHs concentration for each sampling day was determined by GC-MS. Total PAHs in simulated wastewater did not show a clear trend, contrary to the expectation that there should be a progressive increase with time due to photolysis or photodecomposition of compounds or PAHs. COA 350OC KCl showed a range of 6.2-19.3% removal efficiency of each selected PAH with a total percentage efficiency of 27.7-70.8 for all days. For CBV350OC H3PO4 removal efficiency ranged from 10.26-19.30% for each selected PAH and a total efficiency of 50.8-100% for all selected PAHs for the 4 days intervals. The experimental result showed that adsorbent made from Bambusa vulgaris and Oxytenanthera abyssinaca and activated with H3PO4 and KCl as dehydrating agentrespectively can efficiently adsorb the selected PAHs in contaminated water. The study also revealed that PAHs in contaminated water increases with time due to photodecomposition, thus necessitating their treatment on time.


Sign in / Sign up

Export Citation Format

Share Document