Colonization characteristics of bacterial communities on plastic debris: The localization of immigrant bacterial communities

2021 ◽  
Vol 193 ◽  
pp. 116883
Author(s):  
Xiaohan Zhang ◽  
Ying Zhang ◽  
Nan Wu ◽  
Wenjie Li ◽  
Xiaocui Song ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1465
Author(s):  
Chao Shen ◽  
Liuyan Huang ◽  
Guangwu Xie ◽  
Yulai Wang ◽  
Zongkai Ma ◽  
...  

Increasing discharge of plastic debris into aquatic ecosystems and the worsening ecological risks have received growing attention. Once released, plastic debris could serve as a new substrate for microbes in waters. The complex relationship between plastics and biofilms has aroused great interest. To confirm the hypothesis that the presence of plastic in water affects the composition of biofilm in natural state, in situ biofilm culture experiments were conducted in a lake for 40 days. The diversity of biofilm attached on natural (cobble stones (CS) and wood) and plastic substrates (Polyethylene terephthalate (PET) and Polymethyl methacrylate (PMMA)) were compared, and the community structure and composition were also analyzed. Results from high-throughput sequencing of 16S rRNA showed that the diversity and species richness of biofilm bacterial communities on natural substrate (observed species of 1353~1945, Simpson index of 0.977~0.989 and Shannon–Wiener diversity index of 7.42~8.60) were much higher than those on plastic substrates (observed species of 900~1146, Simpson index of 0.914~0.975 and Shannon–Wiener diversity index of 5.47~6.99). The NMDS analyses were used to confirm the taxonomic significance between different samples, and Anosim (p = 0.001, R = 0.892) and Adonis (p = 0.001, R = 808, F = 11.19) demonstrated that this classification was statistically rigorous. Different dominant bacterial communities were found on plastic and natural substrates. Alphaproteobacterial, Betaproteobacteria and Synechococcophycideae dominated on the plastic substrate, while Gammaproteobacteria, Phycisphaerae and Planctomycetia played the main role on the natural substrates. The bacterial community structure of the two substrates also showed significant difference which is consistent with previous studies using other polymer types. Our results shed light on the fact that plastic debris can serve as a new habitat for biofilm colonization, unlike natural substrates, pathogens and plastic-degrading microorganisms selectively attached to plastic substrates, which affected the bacterial community structure and composition in aquatic environment. This study provided a new insight into understanding the potential impacts of plastics serving as a new habitat for microbial communities in freshwater environments. Future research should focus on the potential impacts of plastic-attached biofilms in various aquatic environments and the whole life cycle of plastics (i.e., from plastic fragments to microplastics) and also microbial flock characteristics using microbial plastics in the natural environment should also be addressed.


2020 ◽  
Vol 161 ◽  
pp. 111749
Author(s):  
Ben P. Harvey ◽  
Dorsaf Kerfahi ◽  
YeonGyun Jung ◽  
Jae-Ho Shin ◽  
Jonathan M. Adams ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
S. Krause ◽  
M. Molari ◽  
E. V. Gorb ◽  
S. N. Gorb ◽  
E. Kossel ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12135
Author(s):  
Ashley K. Coons ◽  
Kathrin Busch ◽  
Mark Lenz ◽  
Ute Hentschel ◽  
Erik Borchert

Since the middle of the 20th century, plastics have been incorporated into our everyday lives at an exponential rate. In recent years, the negative impacts of plastics, especially as environmental pollutants, have become evident. Marine plastic debris represents a relatively new and increasingly abundant substrate for colonization by microbial organisms, although the full functional potential of these organisms is yet to be uncovered. In the present study, we investigated plastic type and incubation location as drivers of marine bacterial community structure development on plastics, i.e., the Plastisphere, via 16S rRNA amplicon analysis. Four distinct plastic types: high-density polyethylene (HDPE), linear low-density polyethylene (LDPE), polyamide (PA), polymethyl methacrylate (PMMA), and glass-slide controls were incubated for five weeks in the coastal waters of four different biogeographic locations (Cape Verde, Chile, Japan, South Africa) during July and August of 2019. The primary driver of the coastal Plastisphere composition was identified as incubation location, i.e., biogeography, while substrate type did not have a significant effect on bacterial community composition. The bacterial communities were consistently dominated by the classes Alphaproteobacteria, Gammaproteobacteria, and Bacteroidia, irrespective of sampling location or substrate type, however a core bacterial Plastisphere community was not observable at lower taxonomic levels. Overall, this study sheds light on the question of whether bacterial communities on plastic debris are shaped by the physicochemical properties of the substrate they grow on or by the marine environment in which the plastics are immersed. This study enhances the current understanding of biogeographic variability in the Plastisphere by including biofilms from plastics incubated in the previously uncharted Southern Hemisphere.


Sign in / Sign up

Export Citation Format

Share Document