plastic substrate
Recently Published Documents


TOTAL DOCUMENTS

586
(FIVE YEARS 75)

H-INDEX

42
(FIVE YEARS 4)

Author(s):  
Takane Tsuchii ◽  
Kazuki Kaneko ◽  
Kenta Morita ◽  
Takashi Nishino ◽  
Tatsuo Maruyama
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7635
Author(s):  
Ahmed Albeltagi ◽  
Katherine Gallegos-Rosas ◽  
Caterina Soldano

Organic light emitting transistors (OLETs) combine, in the same device, the function of an electrical switch with the capability of generating light under appropriate bias conditions. In this work, we demonstrate how engineering the dielectric layer based on high-k polyvinylidene fluoride (PVDF)-based polymers can lead to a drastic reduction of device driving voltages and the improvement of its optoelectronic properties. We first investigated the morphology and the dielectric response of these polymer dielectrics in terms of polymer (P(VDF-TrFE) and P(VDF-TrFE-CFE)) and solvent content (cyclopentanone, methylethylketone). Implementing these high-k PVDF-based dielectrics enabled low-bias ambipolar organic light emitting transistors, with reduced threshold voltages (<20 V) and enhanced light output (compared to conventional polymer reference), along with an overall improvement of the device efficiency. Further, we preliminary transferred these fluorinated high-k dielectric films onto a plastic substrate to enable flexible light emitting transistors. These findings hold potential for broader exploitation of the OLET platform, where the device can now be driven by commercially available electronics, thus enabling flexible low-bias organic electronic devices.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1448
Author(s):  
Xuan Zhang ◽  
Yuandong Chen ◽  
Wenqiao Zhang ◽  
Yanli Zhong ◽  
Pei Lei ◽  
...  

Transparent conductive films (TCFs) have received much research attention in the area of aeronautical canopies. However, bad wear, corrosion resistance and weak erosion performance of TCFs dramatically limit their scalable application in the next-generation aeronautical and optoelectronic devices. To address these drawbacks, three types of optically transparent coatings, including acrylic, silicone and polyurethane (PU) coatings were developed and comparatively investigated ex situ in terms of Taber abrasion, nanoindentation and sand erosion tests to improve the wear-resistance and sand erosion abilities of ITO-coated PMMA substrates. To elucidate the sand erosion failure of the coatings, the nanoindentation technique was employed for quantitative assessment of the shape recovery abilities under probe indentation. Results show that the PU topcoats can greatly enhance the sand erosion properties, which were superior to those of acrylic and silicone topcoats. This result can be attributed to the good toughness and self-healing properties of PU topcoats. Additionally, high hardness and good Taber abrasion properties of the ITO films and silicone topcoats did not have an obvious or affirmatory effect on the sand erosion abilities, based on their brittleness and irreparable properties under sand erosion.


2021 ◽  
Vol 1 (3) ◽  
pp. 1-7
Author(s):  
Vira Saamia ◽  
I MADE WIRANATHA ◽  
Irfan Rofik ◽  
Setia betaria Aritonang ◽  
Dwi Ana Oktaviani

Analysis of Touch DNA on forensic laboratory has been a favorite approach to identify a person. Every investigator demand the identity of whom the perpetrator that commit the crime, that leaved their DNA on the evidence. Many factors affect touch DNA, one of these is the substrate of the evidence. Common evidences that often examined in forensic lab are firearms, knife, swords, clothes, and switch bomb. To collect the cell on the evidence we use tapelift method using the duct tape. PrepFilerTM BTA Extraction Kit used to extract the DNA from the duct tape, followed by Quantifiler® Duo. For profiling the DNA we use GlobalFilerTM and fragment analyzed on ABI 3500 Genetic Analyzer followed by GeneMapper ID.X. V.1.4. Based on our analysis, DNA from fabric substrate has the higher percentage of success DNA profiling. The success DNA profiling rate of fabric and plastic substrate is 100%, and 0% for wood substrate. According to recent researches, smooth substrate, like plastic and glass, has higher percentage to get full profile than rough substrate, like woods. But on the fabric, they found has much higher percentage than smooth substrate. This can be due to the absorption ability of the fabric to obtain more cells


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 972
Author(s):  
Ilya Kondratov ◽  
Tatiana Sitnikova ◽  
Irina Kaygorodova ◽  
Natalia Denikina ◽  
Vadim Annenkov ◽  
...  

Lake Baikal is a natural laboratory for the study of species diversity and evolution, as a unique freshwater ecosystem meeting the all of the main criteria of the World Heritage Convention. However, despite many years of research, the true biodiversity of the lake is clearly insufficiently studied, especially that of deep-water benthic sessile organisms. For the first time, plastic waste was raised from depths of 110 to 190 m of Lake Baikal. The aim of this study was to examine the biological community inhabiting the plastic substrate using morphological and molecular genetic analysis. Fragments of plastic packaging materials were densely populated: bryozoans, leeches and their cocoons, capsules of gastropod eggs, and turbellaria cocoons were found. All the data obtained as a result of an analysis of the nucleotide sequences of the standard bar-coding fragment of the mitochondrial genome turned out to be unique. Our results demonstrate the prospects for conducting comprehensive studies of artificial substrates to determine the true biodiversity of benthos in the abyssal zone of Lake Baikal.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1020
Author(s):  
Maha M. Khayyat

Kerf-less removal of surface layers of photovoltaic materials including silicon is an emerging technology by controlled spalling technology. The method is extremely simple, versatile, and applicable to a wide range of substrates. Controlled spalling technology requires a stressor layer, such as Ni, to be deposited on the surface of a brittle material; then, the controlled removal of a continuous surface layer can be performed at a predetermined depth by manipulating the thickness and stress of the Ni layer, introducing a crack near the edge of the substrate, and mechanically guiding the crack as a single fracture front across the surface. However, spalling Si(100) at 300 K (room temperature RT) introduced many cracks and rough regions within the spalled layer. These mechanical issues make it difficult to process these layers of Si(100) for PV, and in other advanced applications, Si does not undergo phase transformations at 77 K (Liquid Nitrogen Temperature, LNT); based on this fact, spalling of Si(100) has been carried out. Spalling of Si(100) at LNT improved material quality for further designed applications. Mechanical flexibility is achieved by employing controlled spalling technology, enabling the large-area transfer of ultrathin body silicon devices to a plastic substrate at room temperature.


2021 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Annalisa Scroccarello ◽  
Flavio Della Pelle ◽  
Qurat Ul Ain Bukhari ◽  
Filippo Silveri ◽  
Daniele Zappi ◽  
...  

Carbonaceous-based nanomaterials (C-NMs) are the pillar of myriad sensing and catalytic electrochemical applications. In this field, the search for environmentally sustainable C-NMs from renewable sources became a duty in the development of nano-sensors. Herein, water-soluble carbon nanofibers (CF) were produced from eucalyptus scraps-based biochar (BH) through an ultrasound treatment, assisted by sodium cholate used as a stabilizing agent. Noteworthy, thanks to the use of the bio-stabilizing agent, the nanofibers were dispersed in water avoiding the use of organic solvents. The BH-CF was investigated as sensing material onto commercial screen-printed electrodes via drop-casting (BH-SPE) and as thin-film fully integrated into a lab-made flexible electrode. The thin film was produced via BH-CF vacuum filtration followed by the film transferring to a thermo-adhesive plastic substrate through thermal lamination. This approach gave rise to a conductive BH-CF film (BH-Film) easily embodied in a lab-made electrode produced with office-grade instrumentation (i.e., craft-cutter machine, thermal laminator) and materials (i.e., laminating pouches, stencil). The BH-CF amount was optimized and the resulting film morphologically characterized, then, the electrochemical performances were studied. The BH-CF electrochemical features were investigated towards a broad range of analytes containing phenol moieties, discrimination between orto- and mono-phenolic structures were achieved for all the studied compounds. As proof of applicability, the BH-CF-based sensors were challenged for simultaneous determination of mono-phenols and ortho-diphenols in olive oil extracts. LODs ≤ 0.5 μM and ≤ 3.8 μM were obtained for hydroxytyrosol (o-diphenol reference standard) and Tyrosol (m-phenols reference standard), respectively. Moreover, a high inter-sensors precision (RSD calibration-slopes ≤ 7%, n = 3) and quantitative recoveries in sample analysis (recoveries 91–111%, RSD ≤ 6%) were obtained. Here, a solvent-free strategy to obtain water-soluble BH-CF was proposed, and their usability to sensor fabrication and modification proved. This work demonstrated as cost-effective and sustainable renewable sources, rationally used, can lead to obtain useful nanomaterials.


Coral Reefs ◽  
2021 ◽  
Author(s):  
Elisa Bergami ◽  
Erik Caroselli ◽  
Lisa Vaccari ◽  
Ilaria Corsi ◽  
Alexander Semenov ◽  
...  

AbstractLarval settlement is a critical step for sessile benthic species such as corals, whose ability to thrive on diverse natural and anthropogenic substrates may lead to a competitive advantage in the colonization of new environments with respect to a narrow tolerance for a specific kind of substratum. Plastic debris, widespread in marine waters, provides a large, motile, and solid substratum supporting a highly diverse biological community. Here we present the first observation of a floating plastic bottle colonized by the deep-sea coral Desmophyllum dianthus. The density pattern and co-occurring species composition suggest a pioneer behavior of this coral species, whose peculiar morphologic plasticity response when interacting with the plastic substrate (i.e., low density polyethylene) has not been observed before. The tolerance of D. dianthus for such plastic substrate may affect ecological processes in deep water environments, disrupting interspecific substrate competition in the benthic community.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3404
Author(s):  
Bih-Lii Chua ◽  
Sun-Ho Baek ◽  
Keun Park ◽  
Dong-Gyu Ahn

Three-dimensional prototypes and final products are commonly fabricated using the material extrusion (ME) process in additive manufacturing applications. However, these prototypes and products are limited to a single material using the ME process due to technical challenges. Deposition of plastic on another dissimilar plastic substrate requires proper control of printing temperature during an ME process due to differences in melting temperatures of dissimilar plastics. In this paper, deposition of PLA filament on an ABS substrate during an ME process is investigated using finite element analysis. A heat transfer finite element (FE) model for the extrusion process is proposed to estimate the parameters of the ME machine for the formulation of a heat flux model. The effects of printing temperature and the stand-off distance on temperature distributions are investigated using the proposed FE model for the extrusion process. The heat flux model is implemented in a proposed heat transfer FE model of single bead deposition of PLA on an ABS plate. From this FE model of deposition, temperature histories during the ME deposition process are estimated. The results of temperature histories are compared with experiments. Using the calibrated FE model, a proper heating temperature of ABS for deposition of PLA is evaluated.


Sign in / Sign up

Export Citation Format

Share Document