An intermediate wavelength, weakly nonlinear theory for the evolution of capillary gravity waves

Wave Motion ◽  
2011 ◽  
Vol 48 (8) ◽  
pp. 707-716 ◽  
Author(s):  
Julia M. Rees ◽  
William B. Zimmerman
2016 ◽  
Vol 810 ◽  
pp. 1-4 ◽  
Author(s):  
Michael Stiassnie

Recently, Bonnefoy et al. (J. Fluid Mech., vol. 805, 2016, R3) studied the resonant interaction of oblique surface gravity waves in a large $50~\text{m}\times 30~\text{m}\times 5~\text{m}$ wave basin. Their experimental results are in excellent quantitative agreement with predictions of the weakly nonlinear wave theory, and provide additional evidence to the strength of this widely used mathematical formulation. In this article, the reader is introduced to the many facets of the weakly nonlinear theory for surface gravity waves, and to its current and possible future applications, deterministic as well as stochastic.


1999 ◽  
Vol 104 (C4) ◽  
pp. 7641-7647 ◽  
Author(s):  
Tanos Elfouhaily ◽  
Donald Thompson ◽  
Douglas Vandemark ◽  
Bertrand Chapron

2021 ◽  
Vol 118 (14) ◽  
pp. e2019348118
Author(s):  
Guillaume Vanderhaegen ◽  
Corentin Naveau ◽  
Pascal Szriftgiser ◽  
Alexandre Kudlinski ◽  
Matteo Conforti ◽  
...  

The classical theory of modulation instability (MI) attributed to Bespalov–Talanov in optics and Benjamin–Feir for water waves is just a linear approximation of nonlinear effects and has limitations that have been corrected using the exact weakly nonlinear theory of wave propagation. We report results of experiments in both optics and hydrodynamics, which are in excellent agreement with nonlinear theory. These observations clearly demonstrate that MI has a wider band of unstable frequencies than predicted by the linear stability analysis. The range of areas where the nonlinear theory of MI can be applied is actually much larger than considered here.


1999 ◽  
Vol 59 (2) ◽  
pp. 1747-1769 ◽  
Author(s):  
Emmanuel Plaut ◽  
Werner Pesch

Sign in / Sign up

Export Citation Format

Share Document