Household behaviour and nutrition-sensitive agricultural practices: Experiences of smallholder farmers in Northern West Bengal, India

2021 ◽  
Vol 21 ◽  
pp. 100296
Author(s):  
Nayana Baral ◽  
Bidur Paria ◽  
Bhagirath Behera ◽  
Pulak Mishra
2021 ◽  
Vol 748 (1) ◽  
pp. 012039
Author(s):  
Tualar Simarmata ◽  
M Khais Proyoga ◽  
Diyan Herdiyantoro ◽  
Mieke R Setiawati ◽  
Kustiwa Adinata ◽  
...  

Abstract Climate change (CC) is real and threatens the livelihood of most smallholder farmers who reside along the coastal area. The CC causes the rise of temperature (0.2-0.3°C/decade) and sea level (SRL = 5 mm/year), drought and floods to occur more frequently, the change of rainfall intensity and pattern and shifting of planting season and leads to the decreasing of crop yield or yield loss. Most of the paddy soil has been exhausted and degraded. About 50% of the rice field along the coastline is effected by high salinity and causes significant yield losses. The research was aimed to summarize the results of the system of organic based aerobic rice intensification (known as IPATBO) and of two climate filed school (CFS) in Cinganjeng and Rawapu that situated along the coastline of Pangandaran and Cilacap. Both IPATBO and CFS have adopted the strategy of climate-resilient sustainable agriculture (CRSA) for restoring the soil health and increasing rice productivity, and as well as to empower the farmer community. The implementation of IPATBO (2010-2020) in the different areas has increased the soil health, fertilizers, and water efficiency (reduce inorganic by 25-50%, and water by 30-40%) and increased rice productivity by at least 25-50%. Both CFS in Ciganjeng and Rawaapu were able to improve soil fertility, increase rice productivity, and farmer capacity. This result concludes the agro-ecological based CRSA and CFS can be adopted for the increasing the resilient of agricultural practices and farmers in adapting to climate change


2021 ◽  
Vol 101 ◽  
pp. 105142
Author(s):  
Dennis Sedem Ehiakpor ◽  
Gideon Danso-Abbeam ◽  
Yussif Mubashiru

2019 ◽  
Vol 7 (2) ◽  
pp. 159-170
Author(s):  
Joachim B. Nachmansohn ◽  
Patricia Imas ◽  
Surinder K. Bansal

Agriculture is the backbone of the Indian economy, in spite of concerned efforts towards industrialization in the last three decades. Therefore, the soil quality and fertility are the major factors in crop production. Declining soil fertility is one of the primary factors that directly affect crop productivity, and fertilizer-use is a key factor in order to keep soil fertility and productivity. A major factor in declining soil fertility is potassium (K) depletion, especially on smallholder farms where fertilization decisions are not based on regular soil testing. Most of the smallholder soybean producers do not have access and investment capacity to soil testing services. Therefore, there is a need to create K fertilizer recommendations based on empirically verified knowledge at India-specific scale. Such large-scale studies, in local filed conditions, are currently lacking. In order to bridge this gap, and generate proven set of directly applicable recommendations, a large-scale plot trial was launched; the Potash for Life (PFL) project. The study evaluated the K response in soybean when fertilizing with potash on K depleted soils in local variable field conditions. The aim was to (1) evaluate the effect and response consistency of K application on soybean yield, (2) to demonstrate to farmers the increased yield and profitability from K-inclusive fertilization regimes for this crop and give recommendations for transient yield increase, and (3) to raise the awareness among smallholder farmers about the importance of K fertilization. A comprehensive experiment was carried out in Madhya Pradesh (M.P.) and Maharashtra. The methodology was straight-forward; two identical plots side by side, with the only difference that one of them was fertilized with additional potash. The results showed a significant yield increase response from the potash application; the average yield increase was 244 kg ha-1 or 26 % in M.P., and 105 kg ha-1 or 36 % in Maharashtra. This entailed an average additional net profit of ₹ 6,681 INR ha-1 and ₹ 2,544 INR ha-1, in M.P. and Maharashtra respectively. It was concluded that the soil status of plant available K is significantly lower than the plant demand for soybean production in the two states, Consequently, K fertilization is necessary in order to improve agricultural practices and optimizing yields. Ultimately, following recommendations given in this study would allow farmers to generate additional profit, which could further allow them to invest in fine-tuning fertilizer practices through the means of soil testing.


2021 ◽  
pp. 1-16
Author(s):  
F. Xu ◽  
R.C. Baker ◽  
T.B. Whitaker ◽  
H. Luo ◽  
Y. Zhao ◽  
...  

Maize is consumed world-wide as staple food, livestock feed, and industrial raw material. However, it is susceptible to fungal attack and at risk of aflatoxin contamination under certain conditions. Such contamination is a serious threat to human and animal health. Ensuring that the maize used by food industry meets standards for aflatoxin levels requires significant investment across the supply chain. Good Agricultural Practices (GAP) form a critical part of a broader, integrated strategy for reduction of aflatoxin contamination. We reviewed and summarised the GAP of maize that would be effective and practicable for aflatoxin control within high-risk regions for smallholder farmers. The suggested practicable GAP for smallholder farmers were: use of drought-tolerant varieties; timely harvesting before physiological maturity; sorting to remove damaged ears and those having poor husk covering; drying properly to 13% moisture content; storage in suitable conditions to keep the crop clean and under condition with minimally proper aeration, or ideally under hermetic conditions. This information is intended to provide guidance for maize growers that will help reduce aflatoxin in high-risk regions, with a specific focus on smallholder farmers. Following the proposed guidelines would contribute to the reduction of aflatoxin contamination during pre-harvest, harvest, and post-harvest stages of the maize value chain.


2020 ◽  
Vol 47 (3) ◽  
pp. 156-162
Author(s):  
M. Abudulai ◽  
G. Mahama ◽  
I. Dzomeku ◽  
A. Seidu ◽  
I. Sugri ◽  
...  

ABSTRACT Peanut (Arachis hypogaea L.) yield and financial returns are often low for smallholder farmers in Ghana. Additionally, aflatoxin concentration in foods derived from peanut can be high enough to adversely affect human health. Eight experiments were conducted in 2016 and 2017 in northern Ghana to compare yield, financial returns, pest reaction, and aflatoxin contamination at harvest with traditional farmer versus improved practices. Relative to the farmer practice, the improved practice consisted of weeding one extra time, applying local potassium-based soaps to suppress arthropods and pathogens, and application of either homogenized oyster shells or a commercial blend of fertilizer containing calcium. Each of these field treatments were followed by either drying peanut on the soil surface and storing in traditional poly bags or drying peanut on tarps and storing in hermetically-sealed bags for 4 months. Peanut yield and financial returns were significantly greater when a commercial blend of fertilizer or oyster shells were applied compared to the farmer practice of not applying any fertilizer. Yield and financial returns were greater when a commercial fertilizer blend was applied compared with oyster shells. Severity of early leaf spot [caused by Passalora arachidicola (Hori) U. Braun] and late leaf spot [caused by Nothopassalora personata (Berk. & M.A. Curtis) U. Braun, C. Nakash., Videira & Crous], scarring and penetration of pods by arthropods, and the number of arthropods at harvest were higher for the farmer practice than for either fertility treatment; no difference was noted when comparing across fertility treatments. Less aflatoxin was observed for both improved practices in the field compared with the farmer practice. Drying peanut on tarps resulted in less aflatoxin compared to drying peanut on the ground regardless of treatments in the field. Aflatoxin concentration after storage was similar when comparing post-harvest treatments of drying on soil surface and storing in poly bags vs. drying on tarps and storing in hermetically-sealed bags. These results demonstrate that substantial financial gain can be realized when management in the field is increased compared with the traditional farmer practice. While aflatoxin concentrations differed between the farmer practice and the improved practices at harvest and after drying, these differences did not translate into differences after storage.


2021 ◽  
Vol 5 ◽  
Author(s):  
Selina Matter ◽  
Sébastien Boillat ◽  
Chinwe Ifejika Speranza

Persistent vulnerability of smallholder farmers to natural hazards and livelihood insecurity call for the identification of measures that enhance the resilience of their agriculture-dependent livelihoods. Without understanding how to secure smallholder livelihoods against adverse social-ecological dynamics, especially related to climate variability and market failures, hunger, poverty, and livelihood collapse are likely to become more entrenched. This study aims for this better understanding by applying the Livelihood Resilience Indicator Framework to investigate the livelihood resilience of smallholder farmers in Makueni County, Kenya, to disease and pest infestations, low yields, and hunger. We analyzed the buffer capacity dimension of resilience among smallholder farmers, using survey data collected in 2016 on 134 households. We conducted principal component analysis to calculate a buffer capacity index at household level, which we then assessed in relation to crop and livestock pests and diseases, yields, and food shortage. We found that there was a significant positive correlation between buffer capacity and maize yields, which could be attributed to diversity in agricultural practices and income. The incidence of pests and diseases correlated significantly and negatively with buffer capacity and specifically with land size, economic status, and social capital. While no significant relationship could be established between buffer capacity and the occurrence of food insecurity, this variable correlated with access to land and livestock, diversity in agricultural practices, and access to infrastructure. The expected positive relation between food security and access to infrastructure and services turned out to be negative, raising questions about the relations between the livelihood resilience construct and rural infrastructure and services. More differentiation is thus needed on the multi-faceted interactions between access to infrastructure and services, including their actual use and benefits to livelihood resilience. In general, most findings supported the Livelihood Resilience Indicator Framework in that households with higher buffer capacity were better equipped to cope with shocks and stressors, hence demonstrating the potential of the framework as an early warning tool.


Sign in / Sign up

Export Citation Format

Share Document