scholarly journals A recombinant receptor-binding domain in trimeric form generates protective immunity against SARS-CoV-2 infection in nonhuman primates

2021 ◽  
pp. 100140
Author(s):  
Limin Yang ◽  
Deyu Tian ◽  
Jian-bao Han ◽  
Wenhui Fan ◽  
Yuan Zhang ◽  
...  
Vaccine ◽  
2020 ◽  
Vol 38 (47) ◽  
pp. 7533-7541 ◽  
Author(s):  
Wen-Hsiang Chen ◽  
Xinrong Tao ◽  
Anurodh Shankar Agrawal ◽  
Abdullah Algaissi ◽  
Bi-Hung Peng ◽  
...  

2021 ◽  
Author(s):  
Limin Yang ◽  
Deyu Tian ◽  
Jian-bao Han ◽  
Wenhui Fan ◽  
Yuan Zhang ◽  
...  

Safe and effective vaccination is critical to combatting the COVID-19 pandemic. Here, we developed a trimeric SARS-CoV-2 receptor-binding domain (RBD) subunit vaccine candidate that simulates the natural structure of the spike (S) trimer glycoprotein. Immunization with RBD-trimer induced robust humoral and cellular immune responses and a high level of neutralizing antibodies that were maintained for at least 4 months. Moreover, the antibodies that were produced in response to the vaccine effectively neutralized the SARS-CoV-2 501Y.V2 variant. Of note, when the titers of the antibodies dropped to a sufficiently low level, only one boost quickly activated the anamnestic immune response, resulting in complete protection against the SARS-CoV-2 challenge in rhesus macaques without typical histopathological changes or viral replication in the lungs and other respiratory tissues. Our results indicated that immunization with SARS-CoV-2 RBD-trimer could raise long-term and broad immunity protection in nonhuman primates, thereby offering an optimal vaccination strategy against COVID-19.


Vaccine ◽  
2007 ◽  
Vol 25 (15) ◽  
pp. 2832-2838 ◽  
Author(s):  
Lanying Du ◽  
Guangyu Zhao ◽  
Yuxian He ◽  
Yan Guo ◽  
Bo-Jian Zheng ◽  
...  

Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 96
Author(s):  
Iuliia A. Merkuleva ◽  
Dmitry N. Shcherbakov ◽  
Mariya B. Borgoyakova ◽  
Daniil V. Shanshin ◽  
Andrey P. Rudometov ◽  
...  

The receptor-binding domain (RBD) of the protein S SARS-CoV-2 is considered to be one of the appealing targets for developing a vaccine against COVID-19. The choice of an expression system is essential when developing subunit vaccines, as it ensures the effective synthesis of the correctly folded target protein, and maintains its antigenic and immunogenic properties. Here, we describe the production of a recombinant RBD protein using prokaryotic (pRBD) and mammalian (mRBD) expression systems, and compare the immunogenicity of prokaryotic and mammalian-expressed RBD using a BALB/c mice model. An analysis of the sera from mice immunized with both variants of the protein revealed that the mRBD expressed in CHO cells provides a significantly stronger humoral immune response compared with the RBD expressed in E.coli cells. A specific antibody titer of sera from mice immunized with mRBD was ten-fold higher than the sera from the mice that received pRBD in ELISA, and about 100-fold higher in a neutralization test. The data obtained suggests that mRBD is capable of inducing neutralizing antibodies against SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document