scholarly journals DCC mediated axon guidance of spinal interneurons is essential for normal locomotor central pattern generator function

2012 ◽  
Vol 366 (2) ◽  
pp. 279-289 ◽  
Author(s):  
Nadine Rabe Bernhardt ◽  
Fatima Memic ◽  
Henrik Gezelius ◽  
Anja-Lena Thiebes ◽  
Anna Vallstedt ◽  
...  
1995 ◽  
Vol 73 (3) ◽  
pp. 1013-1019 ◽  
Author(s):  
R. Perrins ◽  
A. Roberts

1. We have investigated whether in Xenopus embryos, spinal interneurons of the central pattern generator (CPG) receive cholinergic or electrical excitatory input during swimming. The functions of cholinergic excitation during swimming were also investigated. 2. Intracellular recordings were made from rhythmically active presumed premotor interneurons in the dorsal third of the spinal cord. After locally blocking inhibitory potentials with 2 microM strychnine and 40 microM bicuculline, the reliability of spike firing and the amplitude of fast, on-cycle, excitatory postsynaptic potentials (EPSPs) underlying the single on-cycle spikes were measured during fictive swimming. 3. The nicotinic antagonists d-tubocurarine and dihydro-beta-erythroidine (DH beta E, both 10 microM) reversibly reduced the reliability of the spike firing during swimming and reduced the amplitude of the on-cycle EPSP by 16%. DH beta E also reduced the EPSP amplitude in spinalized embryos by 22%. These results indicate that interneurons receive rhythmic cholinergic excitation from a source within the spinal cord. 4. Combined applications of nicotinic and excitatory amino acid (EAA) antagonists or cadmium (Cd2+, 100-200 microM) resulted in complete block of the fast EPSP, suggesting that interneurons do not receive electrical excitation. 5. The nicotinic antagonists mecamylamine and d-tubocurarine (both 5 microM) reduced the duration of episodes of fictive swimming recorded from the ventral roots, in spinal embryos. When applied in the middle of a long episode, d-tubocurarine decreased the swimming frequency, ruling out an effect on the initiation pathway. The cholinesterase inhibitor eserine (10 microM) increased the duration of swimming episodes.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document