Defects in amygdala-dependent fear memory and altered adaptive responses to chronic stress in maternally stressed male mice offspring

2006 ◽  
Vol 27 (1) ◽  
pp. 60
Author(s):  
Sooyoung Chung ◽  
Gi Hoon Son ◽  
Kyungjin Kim
Endocrinology ◽  
2005 ◽  
Vol 146 (7) ◽  
pp. 3202-3210 ◽  
Author(s):  
Sooyoung Chung ◽  
Gi Hoon Son ◽  
Sung Ho Park ◽  
Eonyoung Park ◽  
Kun Ho Lee ◽  
...  

Abstract It is well established that stress in early life can alter the activity of the hypothalamus-pituitary-adrenal (HPA) axis, but most studies to date have focused on HPA reactivity in response to a single acute stress. The present study addressed whether stress in pregnant mice could influence the adaptive responses of their offspring to chronic stress. Male offspring were exclusively used in this study. Elevated plus maze tests revealed that 14 d of repeated restraint stress (6 h per day; from postnatal d 50–63) significantly increased anxiety-like behavior in maternally stressed mice. NBI 27914, a CRH receptor antagonist, completely eliminated anxiety-related behaviors in a dose-dependent manner, indicating an involvement of a hyperactive CRH system. In accordance with increased anxiety, CRH contents in the hypothalamus and amygdala were significantly higher in these mice. Despite an increased basal activity of the CRH-ACTH system, the combination of chronic prenatal and postnatal stress resulted in a significant reduction of basal plasma corticosterone level, presumably because of a defect in adrenal function. Along with alterations in hypothalamic and hippocampal corticosteroid receptors, it was also demonstrated that a dysfunction in negative feedback inhibition of the HPA axis could be deteriorated by chronic stress in maternally stressed male mice. Taken together, these results indicate that exposure to maternal stress in the womb can affect an animal’s coping capacity to chronic postnatal stress.


2012 ◽  
Vol 105 (5) ◽  
pp. 1168-1174 ◽  
Author(s):  
Carmel M. McDermott ◽  
Dana Liu ◽  
Laura A. Schrader

2016 ◽  
Vol 70 ◽  
pp. 33-37 ◽  
Author(s):  
Gabriela F. de Medeiros ◽  
Amandine M. Minni ◽  
Jean-Christophe Helbling ◽  
Marie-Pierre Moisan
Keyword(s):  

2020 ◽  
pp. 297-306
Author(s):  
T. Li ◽  
J. Yao ◽  
Q. Zhang ◽  
Q. Li ◽  
J. Li ◽  
...  

Chronic stress is a crucial public issue that occurs when a person is repetitively stimulated by various stressors. Previous researches have reported that chronic stress induces spermatogenesis dysfunction in the reproductive system, but its molecular mechanisms remain unclear. The nectin protein family, including nectin-1 to nectin-4, is Ca(2+)-independent immunoglobulin-like cell adhesion molecules, that are widely expressed in the hippocampus, testicular tissue, epithelial cells and other sites. Nectin-3 contributes to the sperm development at the late stage, and the abnormal expression of nectin-3 impairs spermatogenesis. Some recent studies have demonstrated that stress induces a decrease in nectin-3 expression in the hippocampus via corticotropin-releasing hormone (CRH) to corticotropin-releasing hormone receptor 1 (CRHR1) pathway. Here, we tested whether chronic stress also caused a reduction in nectin-3 expression in the testis. We established a chronic social defeat stress paradigm, which provides naturalistic and complex chronic stress in male C57BL/6 mice. After 25 days of chronic social defeat stress, the mice showed weight loss, thymic atrophy and some other typical symptoms of chronic stress (e.g. anxiety-like behavior and social avoidance behavior). We found gonad atrophy, testicular histological structure changes and semen quality reductions in the stressed mice. The stressed male mice significantly spent more time to impregnate the female mice than the control male mice. Moreover, nectin-3 protein levels in stressed mice were significantly decreased in the testes compared with those in control mice. In addition, we found that the CRHR1 expression level was increased in the testes of stressed mice. Therefore, we demonstrated a decreased level of nectin-3 expression and an increase in CRHR1 expression in the testis after exposure to chronic stress, which may provide a potential therapeutic target for the spermatogenesis dysfunction induced by chronic stress.


Endocrinology ◽  
2017 ◽  
Vol 158 (6) ◽  
pp. 1939-1950 ◽  
Author(s):  
Holger Henneicke ◽  
Jingbao Li ◽  
Sarah Kim ◽  
Sylvia J. Gasparini ◽  
Markus J. Seibel ◽  
...  

Abstract Chronic stress and depression are associated with alterations in the hypothalamic–pituitary–adrenal signaling cascade and considered a risk factor for bone loss and fractures. However, the mechanisms underlying the association between stress and poor bone health are unclear. Using a transgenic (tg) mouse model in which glucocorticoid signaling is selectively disrupted in mature osteoblasts and osteocytes [11β-hydroxysteroid-dehydrogenase type 2 (HSD2)OB-tg mice], the present study examines the impact of chronic stress on skeletal metabolism and structure. Eight-week-old male and female HSD2OB-tg mice and their wild-type (WT) littermates were exposed to chronic mild stress (CMS) for the duration of 4 weeks. At the endpoint, L3 vertebrae and tibiae were analyzed by micro–computed tomography and histomorphometry, and bone turnover was measured biochemically. Compared with nonstressed controls, exposure to CMS caused an approximately threefold increase in serum corticosterone concentrations in WT and HSD2OB-tg mice of both genders. Compared with controls, CMS resulted in loss of vertebral trabecular bone mass in male WT mice but not in male HSD2OB-tg littermates. Furthermore, both tibial cortical area and area fraction were reduced in stressed WT but not in stressed HSD2OB-tg male mice. Osteoclast activity and bone resorption marker were increased in WT males following CMS, features absent in HSD2OB-tg males. Interestingly, CMS had little effect on vertebral and long-bone structural parameters in female mice. We conclude that in male mice, bone loss during CMS is mediated via enhanced glucocorticoid signaling in osteoblasts (and osteocytes) and subsequent activation of osteoclasts. Female mice appear resistant to the skeletal effects of CMS.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ling Yan ◽  
Mohan Jayaram ◽  
Keerthana Chithanathan ◽  
Alexander Zharkovsky ◽  
Li Tian

The coronavirus disease 2019 (COVID-19) pandemic has generated a lot of stress and anxiety among not only infected patients but also the general population across the globe, which disturbs cerebral immune homeostasis and potentially exacerbates the SARS-CoV-2 virus-induced neuroinflammation, especially among people susceptible to neuropsychiatric disorders. Here, we used a chronic unpredictable mild stress (CUMS) mouse model to study its effects on glia-mediated neuroinflammation and expression of SARS-CoV2 viral receptors. We observed that female mice showed depressive-like behavior after CUMS, whereas male mice showed enhanced anxiety and social withdrawal. Interestingly, CUMS led to increased amounts of total and MHCII+ microglia in the hippocampi of female mice but not male mice. mRNA levels of SARS-CoV-2 viral receptors angiotensin-converting enzyme 2 (Ace2) and basigin (Bsg) were also upregulated in the prefrontal cortices of stressed female mice but not male mice. Similarly, sex-specific changes in SARS-CoV-2 viral receptors FURIN and neuropilin-1 (NRP1) were also observed in monocytes of human caregivers enduring chronic stress. Our findings provided evidence on detrimental effects of chronic stress on the brain and behavior and implied potential sex-dependent susceptibility to SARS-CoV-2 infection after chronic stress.


Sign in / Sign up

Export Citation Format

Share Document