Improved epicardial cardiac fibroblast generation from iPSCs

Author(s):  
Alexander J. Whitehead ◽  
James D. Hocker ◽  
Bing Ren ◽  
Adam J. Engler
Keyword(s):  
2008 ◽  
Vol 7 ◽  
pp. 116-116
Author(s):  
D PHELAN ◽  
C WATSON ◽  
P COLLIER ◽  
M LEDWIDGE ◽  
J BAUGH ◽  
...  
Keyword(s):  

2021 ◽  
Vol 48 (1) ◽  
pp. 57-66
Author(s):  
Aimeé Salas-Hernández ◽  
Claudio Espinoza-Pérez ◽  
Raúl Vivar ◽  
Jenaro Espitia-Corredor ◽  
José Lillo ◽  
...  

2021 ◽  
Vol 23 (7) ◽  
Author(s):  
Sally Yu Shi ◽  
Xin Luo ◽  
Tracy M. Yamawaki ◽  
Chi-Ming Li ◽  
Brandon Ason ◽  
...  

Abstract Purpose of Review Cardiac fibroblast activation contributes to fibrosis, maladaptive remodeling and heart failure progression. This review summarizes the latest findings on cardiac fibroblast activation dynamics derived from single-cell transcriptomic analyses and discusses how this information may aid the development of new multispecific medicines. Recent Findings Advances in single-cell gene expression technologies have led to the discovery of distinct fibroblast subsets, some of which are more prevalent in diseased tissue and exhibit temporal changes in response to injury. In parallel to the rapid development of single-cell platforms, the advent of multispecific therapeutics is beginning to transform the biopharmaceutical landscape, paving the way for the selective targeting of diseased fibroblast subpopulations. Summary Insights gained from single-cell technologies reveal critical cardiac fibroblast subsets that play a pathogenic role in the progression of heart failure. Combined with the development of multispecific therapeutic agents that have enabled access to previously “undruggable” targets, we are entering a new era of precision medicine.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Holly E Mewhort ◽  
Brodie D Lipon ◽  
Daniyil A Svystonyuk ◽  
David G Guzzardi ◽  
Paul W Fedak

BACKGROUND: Following myocardial infarction (MI), activated cardiac myofibroblasts facilitate extracellular matrix (ECM) remodeling to prevent mechanical complications. However, prolonged myofibroblast activity leads to dysregulation of the ECM, maladaptive remodeling, fibrosis and heart failure (HF). Chronic inflammation is believed to drive persistent myofibroblast activity, however, the mechanisms are unclear. In this study, we explored the effects of peripheral blood monocytes on human cardiac fibroblast activation in a 3D ECM microenvironment. METHODS/RESULTS: Human cardiac fibroblasts isolated from surgical human heart biopsies were seeded into 3D collagen matrices. Peripheral blood monocytes isolated from healthy human donors were co-cultured with fibroblasts. Monocytes increased fibroblast activation measured by collagen ECM contraction (17.9±11.1% increase; p<0.01) and resulted in local ECM remodeling observed by confocal microscopy. Under co-culture conditions that prevent cell-cell contact but allow interaction via paracrine factors, monocytes had minimal effects on fibroblast activation (6.4±7.0 vs.17.9±11.1% increase, respectively; p<0.01). Multiplex analysis of the co-culture media revealed an increase in the paracrine factors Transforming Growth Factor-beta 1 (TGF-β1) and Matrix Metalloproteinase 9 when monocytes and fibroblasts were cultured under cell-cell contact conditions (162.2±11.7pg/mL and 17.5±0.5ng/mL, respectively, vs. 21.8±5.7pg/mL and 4.9 ±0.4ng/mL; p<0.001). TGF-β1 blockade abolished monocyte induced cardiac fibroblast activation, as did β1-integrin. These data suggest direct cell-cell interaction between monocytes and cardiac fibroblasts through β1-integrin results in TGF-β1 release facilitating fibroblast activation and matrix remodeling. CONCLUSION: For the first time, we demonstrate that peripheral blood monocytes stimulate human cardiac fibroblast activation through a mechanism involving TGF-β1 release as a consequence of direct cell-cell interaction through β1-integrin. These data implicate inflammation as a driver of cardiac fibrosis post-MI, highlighting potential novel therapeutic targets for the treatment of ischemic HF.


Sign in / Sign up

Export Citation Format

Share Document