Feature selection methods for big data bioinformatics: A survey from the search perspective

Methods ◽  
2016 ◽  
Vol 111 ◽  
pp. 21-31 ◽  
Author(s):  
Lipo Wang ◽  
Yaoli Wang ◽  
Qing Chang
2021 ◽  
Vol 26 (1) ◽  
pp. 67-77
Author(s):  
Siva Sankari Subbiah ◽  
Jayakumar Chinnappan

Now a day, all the organizations collecting huge volume of data without knowing its usefulness. The fast development of Internet helps the organizations to capture data in many different formats through Internet of Things (IoT), social media and from other disparate sources. The dimension of the dataset increases day by day at an extraordinary rate resulting in large scale dataset with high dimensionality. The present paper reviews the opportunities and challenges of feature selection for processing the high dimensional data with reduced complexity and improved accuracy. In the modern big data world the feature selection has a significance in reducing the dimensionality and overfitting of the learning process. Many feature selection methods have been proposed by researchers for obtaining more relevant features especially from the big datasets that helps to provide accurate learning results without degradation in performance. This paper discusses the importance of feature selection, basic feature selection approaches, centralized and distributed big data processing using Hadoop and Spark, challenges of feature selection and provides the summary of the related research work done by various researchers. As a result, the big data analysis with the feature selection improves the accuracy of the learning.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Khawla Tadist ◽  
Said Najah ◽  
Nikola S. Nikolov ◽  
Fatiha Mrabti ◽  
Azeddine Zahi

Author(s):  
Fatemeh Alighardashi ◽  
Mohammad Ali Zare Chahooki

Improving the software product quality before releasing by periodic tests is one of the most expensive activities in software projects. Due to limited resources to modules test in software projects, it is important to identify fault-prone modules and use the test sources for fault prediction in these modules. Software fault predictors based on machine learning algorithms, are effective tools for identifying fault-prone modules. Extensive studies are being done in this field to find the connection between features of software modules, and their fault-prone. Some of features in predictive algorithms are ineffective and reduce the accuracy of prediction process. So, feature selection methods to increase performance of prediction models in fault-prone modules are widely used. In this study, we proposed a feature selection method for effective selection of features, by using combination of filter feature selection methods. In the proposed filter method, the combination of several filter feature selection methods presented as fused weighed filter method. Then, the proposed method caused convergence rate of feature selection as well as the accuracy improvement. The obtained results on NASA and PROMISE with ten datasets, indicates the effectiveness of proposed method in improvement of accuracy and convergence of software fault prediction.


2021 ◽  
Vol 15 (4) ◽  
pp. 1-46
Author(s):  
Kui Yu ◽  
Lin Liu ◽  
Jiuyong Li

In this article, we aim to develop a unified view of causal and non-causal feature selection methods. The unified view will fill in the gap in the research of the relation between the two types of methods. Based on the Bayesian network framework and information theory, we first show that causal and non-causal feature selection methods share the same objective. That is to find the Markov blanket of a class attribute, the theoretically optimal feature set for classification. We then examine the assumptions made by causal and non-causal feature selection methods when searching for the optimal feature set, and unify the assumptions by mapping them to the restrictions on the structure of the Bayesian network model of the studied problem. We further analyze in detail how the structural assumptions lead to the different levels of approximations employed by the methods in their search, which then result in the approximations in the feature sets found by the methods with respect to the optimal feature set. With the unified view, we can interpret the output of non-causal methods from a causal perspective and derive the error bounds of both types of methods. Finally, we present practical understanding of the relation between causal and non-causal methods using extensive experiments with synthetic data and various types of real-world data.


Sign in / Sign up

Export Citation Format

Share Document