scholarly journals Opportunities and Challenges of Feature Selection Methods for High Dimensional Data: A Review

2021 ◽  
Vol 26 (1) ◽  
pp. 67-77
Author(s):  
Siva Sankari Subbiah ◽  
Jayakumar Chinnappan

Now a day, all the organizations collecting huge volume of data without knowing its usefulness. The fast development of Internet helps the organizations to capture data in many different formats through Internet of Things (IoT), social media and from other disparate sources. The dimension of the dataset increases day by day at an extraordinary rate resulting in large scale dataset with high dimensionality. The present paper reviews the opportunities and challenges of feature selection for processing the high dimensional data with reduced complexity and improved accuracy. In the modern big data world the feature selection has a significance in reducing the dimensionality and overfitting of the learning process. Many feature selection methods have been proposed by researchers for obtaining more relevant features especially from the big datasets that helps to provide accurate learning results without degradation in performance. This paper discusses the importance of feature selection, basic feature selection approaches, centralized and distributed big data processing using Hadoop and Spark, challenges of feature selection and provides the summary of the related research work done by various researchers. As a result, the big data analysis with the feature selection improves the accuracy of the learning.

2017 ◽  
Vol 56 (2) ◽  
pp. 395-442 ◽  
Author(s):  
V. Bolón-Canedo ◽  
D. Rego-Fernández ◽  
D. Peteiro-Barral ◽  
A. Alonso-Betanzos ◽  
B. Guijarro-Berdiñas ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Lei Shu ◽  
Kun Huang ◽  
Wenhao Jiang ◽  
Wenming Wu ◽  
Hongling Liu

It is easy to lead to poor generalization in machine learning tasks using real-world data directly, since such data is usually high-dimensional dimensionality and limited. Through learning the low dimensional representations of high-dimensional data, feature selection can retain useful features for machine learning tasks. Using these useful features effectively trains machine learning models. Hence, it is a challenge for feature selection from high-dimensional data. To address this issue, in this paper, a hybrid approach consisted of an autoencoder and Bayesian methods is proposed for a novel feature selection. Firstly, Bayesian methods are embedded in the proposed autoencoder as a special hidden layer. This of doing is to increase the precision during selecting non-redundant features. Then, the other hidden layers of the autoencoder are used for non-redundant feature selection. Finally, compared with the mainstream approaches for feature selection, the proposed method outperforms them. We find that the way consisted of autoencoders and probabilistic correction methods is more meaningful than that of stacking architectures or adding constraints to autoencoders as regards feature selection. We also demonstrate that stacked autoencoders are more suitable for large-scale feature selection, however, sparse autoencoders are beneficial for a smaller number of feature selection. We indicate that the value of the proposed method provides a theoretical reference to analyze the optimality of feature selection.


2018 ◽  
Vol 8 (2) ◽  
pp. 1-24 ◽  
Author(s):  
Abdullah Saeed Ghareb ◽  
Azuraliza Abu Bakara ◽  
Qasem A. Al-Radaideh ◽  
Abdul Razak Hamdan

The filtering of a large amount of data is an important process in data mining tasks, particularly for the categorization of unstructured high dimensional data. Therefore, a feature selection process is desired to reduce the space of high dimensional data into small relevant subset dimensions that represent the best features for text categorization. In this article, three enhanced filter feature selection methods, Category Relevant Feature Measure, Modified Category Discriminated Measure, and Odd Ratio2, are proposed. These methods combine the relevant information about features in both the inter- and intra-category. The effectiveness of the proposed methods with Naïve Bayes and associative classification is evaluated by traditional measures of text categorization, namely, macro-averaging of precision, recall, and F-measure. Experiments are conducted on three Arabic text datasets used for text categorization. The experimental results showed that the proposed methods are able to achieve better and comparable results when compared to 12 well known traditional methods.


Author(s):  
Damien François

In many applications, like function approximation, pattern recognition, time series prediction, and data mining, one has to build a model relating some features describing the data to some response value. Often, the features that are relevant for building the model are not known in advance. Feature selection methods allow removing irrelevant and/or redundant features to only keep the feature subset that are most useful to build a prediction model. The model is simpler and easier to interpret, reducing the risks of overfitting, non-convergence, etc. By contrast with other dimensionality reduction techniques such as principal component analysis or more recent nonlinear projection techniques (Lee & Verleysen 2007), which build a new, smaller set of features, the features that are selected by feature selection methods preserve their initial meaning, potentially bringing extra information about the process being modeled (Guyon 2006). Recently, the advent of high-dimensional data has raised new challenges for feature selection methods, both from the algorithmic point of view and the conceptual point of view (Liu & Motoda 2007). The problem of feature selection is exponential in nature, and many approximate algorithms are cubic with respect to the initial number of features, which may be intractable when the dimensionality of the data is large. Furthermore, high-dimensional data are often highly redundant, and two distinct subsets of features may have very similar predictive power, which can make it difficult to identify the best subset.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 613
Author(s):  
Yu Zhou ◽  
Junhao Kang ◽  
Xiao Zhang

Recent discretization-based feature selection methods show great advantages by introducing the entropy-based cut-points for features to integrate discretization and feature selection into one stage for high-dimensional data. However, current methods usually consider the individual features independently, ignoring the interaction between features with cut-points and those without cut-points, which results in information loss. In this paper, we propose a cooperative coevolutionary algorithm based on the genetic algorithm (GA) and particle swarm optimization (PSO), which searches for the feature subsets with and without entropy-based cut-points simultaneously. For the features with cut-points, a ranking mechanism is used to control the probability of mutation and crossover in GA. In addition, a binary-coded PSO is applied to update the indices of the selected features without cut-points. Experimental results on 10 real datasets verify the effectiveness of our algorithm in classification accuracy compared with several state-of-the-art competitors.


2009 ◽  
Vol 35 (7) ◽  
pp. 859-866
Author(s):  
Ming LIU ◽  
Xiao-Long WANG ◽  
Yuan-Chao LIU

Sign in / Sign up

Export Citation Format

Share Document