Independent evolutionary transitions to pueriparity across multiple timescales in the viviparous genus Salamandra

Author(s):  
Kevin.P. Mulder ◽  
Lucía Alarcón-Ríos ◽  
Alfredo G. Nicieza ◽  
Robert C. Fleischer ◽  
Rayna C. Bell ◽  
...  

In the large body of literature on ecological and evolutionary mechanisms underlying transitions between planktotrophy and lecithotrophy, the focus has typically covered long evolutionary timescales; that is, evolution of complex larval traits is generally discussed in the context of phylogenetic patterns detectable at the level of families, classes, or phyla. An analytical approach incorporating comparative phylogenetics is increasingly used to address these long-view questions. Here, we discuss what has been learned from taking a comparative phylogenetic approach and the limitations of this approach. We propose that approaches based on a closer view—that is, analyses that focus on genetic, morphological, and functional variation among individuals, populations, or closely related congeners—have greater potential to answer questions about mechanisms underlying the loss and regain of major complex characters such as feeding larvae.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
T J Buser ◽  
D L Finnegan ◽  
A P Summers ◽  
M A Kolmann

Synopsis Evolutionary transitions between habitats have been catalysts for some of the most stunning examples of adaptive diversification, with novel niches and new resources providing ecological opportunity for such radiations. In aquatic animals, transitions from saltwater to freshwater habitats are rare, but occur often enough that in the Neotropics for example, marine-derived fishes contribute noticeably to regional ichthyofaunal diversity. Here, we investigate how morphology has evolved in a group of temperate fishes that contain a marine to freshwater transition: the sculpins (Percomorpha; Cottoidea). We devised a novel method for classifying dietary niche and relating functional aspects of prey to their predators. Coupled with functional measurements of the jaw apparatus in cottoids, we explored whether freshwater sculpins have fundamentally changed their niche after invading freshwater (niche lability) or if they retain a niche similar to their marine cousins (niche conservatism). Freshwater sculpins exhibit both phylogeographical and ecological signals of phylogenetic niche conservatism, meaning that regardless of habitat, sculpins fill similar niche roles in either saltwater or freshwater. Rather than competition guiding niche conservatism in freshwater cottoids, we argue that strong intrinsic constraints on morphological and ecological evolution are at play, contra to other studies of diversification in marine-derived freshwater fishes. However, several intertidal and subtidal sculpins as well as several pelagic freshwater species from Lake Baikal show remarkable departures from the typical sculpin bauplan. Our method of prey categorization provides an explicit, quantitative means of classifying dietary niche for macroevolutionary studies, rather than relying on somewhat arbitrary means used in previous literature.


2010 ◽  
Vol 365 (1537) ◽  
pp. 99-109 ◽  
Author(s):  
Spencer C. H. Barrett

Flowering plants display spectacular floral diversity and a bewildering array of reproductive adaptations that promote mating, particularly outbreeding. A striking feature of this diversity is that related species often differ in pollination and mating systems, and intraspecific variation in sexual traits is not unusual, especially among herbaceous plants. This variation provides opportunities for evolutionary biologists to link micro-evolutionary processes to the macro-evolutionary patterns that are evident within lineages. Here, I provide some personal reflections on recent progress in our understanding of the ecology and evolution of plant reproductive diversity. I begin with a brief historical sketch of the major developments in this field and then focus on three of the most significant evolutionary transitions in the reproductive biology of flowering plants: the pathway from outcrossing to predominant self-fertilization, the origin of separate sexes (females and males) from hermaphroditism and the shift from animal pollination to wind pollination. For each evolutionary transition, I consider what we have discovered and some of the problems that still remain unsolved. I conclude by discussing how new approaches might influence future research in plant reproductive biology.


2021 ◽  
Vol 31 (2) ◽  
pp. 023109
Author(s):  
Guillermo H. Goldsztein ◽  
Alice N. Nadeau ◽  
Steven H. Strogatz

2019 ◽  
Vol 30 (19) ◽  
pp. 2435-2438 ◽  
Author(s):  
Jonah Cool ◽  
Richard S. Conroy ◽  
Sean E. Hanlon ◽  
Shannon K. Hughes ◽  
Ananda L. Roy

Improvements in the sensitivity, content, and throughput of microscopy, in the depth and throughput of single-cell sequencing approaches, and in computational and modeling tools for data integration have created a portfolio of methods for building spatiotemporal cell atlases. Challenges in this fast-moving field include optimizing experimental conditions to allow a holistic view of tissues, extending molecular analysis across multiple timescales, and developing new tools for 1) managing large data sets, 2) extracting patterns and correlation from these data, and 3) integrating and visualizing data and derived results in an informative way. The utility of these tools and atlases for the broader scientific community will be accelerated through a commitment to findable, accessible, interoperable, and reusable data and tool sharing principles that can be facilitated through coordination and collaboration between programs working in this space.


2021 ◽  
Vol 34 (4) ◽  
pp. 594-603
Author(s):  
Gergely Katona ◽  
Balázs Vági ◽  
Zsolt Végvári ◽  
András Liker ◽  
Robert P. Freckleton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document