Frequency-domain nonlinear model updating based on analytical sensitivity and the Multi-Harmonic balance method

2022 ◽  
Vol 163 ◽  
pp. 108169
Author(s):  
Tianxu Zhu ◽  
Genbei Zhang ◽  
Chaoping Zang
2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Hongliang Yao ◽  
Qian Zhao ◽  
Qi Xu ◽  
Bangchun Wen

The efficiency and accuracy of common time and frequency domain methods that are used to simulate the response of a rotor system with malfunctions are compared and analyzed. The Newmark method and the incremental harmonic balance method are selected as typical representatives of time and frequency domain methods, respectively. To improve the simulation efficiency, the fixed interface component mode synthesis approach is combined with the Newmark method and the receptance approach is combined with the incremental harmonic balance method. Numerical simulations are performed for rotor systems with single and double frequency excitations. The inherent characteristic that determines the efficiency of the two methods is analyzed. The results of the analysis indicated that frequency domain methods are suitable single and double frequency excitation rotor systems, whereas time domain methods are more suitable for multifrequency excitation rotor systems.


Author(s):  
Loi¨c Salles ◽  
Laurent Blanc ◽  
Fabrice Thouverez ◽  
Alexander M. Gouskov ◽  
Pierrick Jean

Contact interfaces with dry friction are frequently used in turbomachinery. Dry friction damping produced by the sliding surfaces of these interfaces reduces the amplitude of bladed-disk vibration. The relative displacements at these interfaces lead to fretting-wear which reduces the average life expectancy of the structure. Frequency response functions are calculated numerically by using the multi-Harmonic Balance Method (mHBM). The Dynamic Lagrangian Frequency-Time method is used to calculate contact forces in the frequency domain. A new strategy for solving non-linear systems based on dual time stepping is applied. This method is faster than using Newton solvers. It was used successfully for solving Nonlinear CFD equations in the frequency domain. This new approach allows identifying the steady state of worn systems by integrating wear rate equations a on dual time scale. The dual time equations are integrated by an implicit scheme. Of the different orders tested, the first order scheme provided the best results.


Author(s):  
Christian Frey ◽  
Graham Ashcroft ◽  
Hans-Peter Kersken

This paper compares various approaches to simulate unsteady blade row interactions in turbomachinery. Unsteady simulations of turbomachinery flows have gained importance over the last years since increasing computing power allows the user to consider 3D unsteady flows for industrially relevant configurations. Furthermore, for turbomachinery flows, the last two decades have seen considerable efforts in developing adequate CFD methods which exploit the rotational symmetries of blade rows and are therefore up to several orders of magnitude more efficient than the standard unsteady approach for full wheel configurations. This paper focusses on the harmonic balance method which has been developed recently by the authors. The system of equations as well as the iterative solver are formulated in the frequency domain. The aim of this paper is to compare the harmonic balance method with the time-linearized as well as the non-linear unsteady approach. For the latter the unsteady flow fields in a fan stage are compared to reference results obtained with a highly resolved unsteady simulation. Moreover the amplitudes of the acoustic modes which are due to the rotor stator interaction are compared to measurement data available for this fan stage. The harmonic balance results for different sets of harmonics in the blade rows are used to explain the minor discrepancies between the time-linearized and unsteady results published by the authors in previous publications. The results show that the differences are primarily due to the neglection of the two-way coupling in the time-linearized simulations.


Author(s):  
Loïc Salles ◽  
Laurent Blanc ◽  
Fabrice Thouverez ◽  
Alexander M. Gouskov ◽  
Pierrick Jean

Contact interfaces with dry friction are frequently used in turbomachinery. Dry friction damping produced by the sliding surfaces of these interfaces reduces the amplitude of bladed-disk vibration. The relative displacements at these interfaces lead to fretting-wear which reduces the average life expectancy of the structure. Frequency response functions are calculated numerically by using the multi-harmonic balance method (mHBM). The dynamic Lagrangian frequency-time method is used to calculate contact forces in the frequency domain. A new strategy for solving nonlinear systems based on dual time stepping is applied. This method is faster than using Newton solvers. It was used successfully for solving Nonlinear CFD equations in the frequency domain. This new approach allows identifying the steady state of worn systems by integrating wear rate equations a on dual time scale. The dual time equations are integrated by an implicit scheme. Of the different orders tested, the first order scheme provided the best results.


2016 ◽  
Vol 63 (2) ◽  
pp. 297-314 ◽  
Author(s):  
Frederic Schreyer ◽  
Remco I. Leine

Abstract In this paper we present a mixed shooting – harmonic balance method for large linear mechanical systems on which local nonlinearities are imposed. The standard harmonic balance method (HBM), which approximates the periodic solution in frequency domain, is very popular as it is well suited for large systems with many degrees of freedom. However, it suffers from the fact that local nonlinearities cannot be evaluated directly in the frequency domain. The standard HBM performs an inverse Fourier transform, then calculates the nonlinear force in time domain and subsequently the Fourier coefficients of the nonlinear force. The disadvantage of the HBM is that strong nonlinearities are poorly represented by a truncated Fourier series. In contrast, the shooting method operates in time-domain and relies on numerical time-simulation. Set-valued force laws such as dry friction or other strong nonlinearities can be dealt with if an appropriate numerical integrator is available. The shooting method, however, becomes infeasible if the system has many states. The proposed mixed shooting-HBM approach combines the best of both worlds.


Sign in / Sign up

Export Citation Format

Share Document