Organic compounds percutaneous penetration in vivo in man: Relationship to mathematical predictive model

2020 ◽  
Vol 112 ◽  
pp. 104614
Author(s):  
Anuk Burli ◽  
Rebecca M. Law ◽  
Jocelyn Rodriguez ◽  
Howard I. Maibach
1983 ◽  
Vol 81 (5) ◽  
pp. 388-392 ◽  
Author(s):  
Jerry L. McCullough ◽  
Gerald D. Weinstein ◽  
Michael G. Rosenblum ◽  
Jennifer J. Jenkins

2017 ◽  
Vol 1 ◽  
pp. 239784731772319 ◽  
Author(s):  
A Lymberopoulos ◽  
C Demopoulou ◽  
M Kyriazi ◽  
MS Katsarou ◽  
N Demertzis ◽  
...  

Objectives: Liposomes are reported as penetration enhancers for dermal and transdermal delivery. However, little is known about their percutaneous penetration and as to at which level they deliver encapsulated drugs. The penetration of multilamellar vesicles (MLVs) and small unilamellar vesicles (SUVs), in comparison to one of their lipid components, was investigated. Methods: Using the fluorescent lipid, Lissamine Rhodamine B-PE (R), as a constituent, MLV and SUV liposomes were prepared, tested, and R, MLV, or SUV were applied in vivo on the back of hairless mice. Absorption of each was evaluated at the levels of stratum corneum, living skin, and blood by fluorometry. Results: Penetration of the lipid R in stratum corneum in the nonliposomal form exceeded that in the liposomal form and only R penetrates the living skin in a statistically significant manner. No statistical significant absorption into blood was observed with either form. Conclusions: Liposomes size did not play an important role in penetration to stratum corneum. The lipid constituent in the nonliposomal form penetrated at higher rates into stratum corneum and living skin. Even though these liposomes entered stratum corneum, they were not significantly absorbed into viable skin or blood.


Author(s):  
A. Di Francesco ◽  
J. Zajc ◽  
N. Gunde-Cimerman ◽  
E. Aprea ◽  
F. Gasperi ◽  
...  

Abstract Aureobasidium strains isolated from diverse unconventional environments belonging to the species A. pullulans, A. melanogenum, and A. subglaciale were evaluated for Volatile Organic Compounds (VOCs) production as a part of their modes of action against Botrytis cinerea of tomato and table grape. By in vitro assay, VOCs generated by the antagonists belonging to the species A. subglaciale showed the highest inhibition percentage of the pathogen mycelial growth (65.4%). In vivo tests were conducted with tomatoes and grapes artificially inoculated with B. cinerea conidial suspension, and exposed to VOCs emitted by the most efficient antagonists of each species (AP1, AM10, AS14) showing that VOCs of AP1 (A. pullulans) reduced the incidence by 67%, partially confirmed by the in vitro results. Conversely, on table grape, VOCs produced by all the strains did not control the fungal incidence but were only reducing the infection severity (< 44.4% by A. pullulans; < 30.5% by A. melanogenum, and A. subglaciale). Solid-phase microextraction (SPME) and subsequent gas chromatography coupled to mass spectrometry identified ethanol, 3-methyl-1-butanol, 2-methyl-1-propanol as the most produced VOCs. However, there were differences in the amounts of produced VOCs as well as in their repertoire. The EC50 values of VOCs for reduction of mycelial growth of B. cinerea uncovered 3-methyl-1-butanol as the most effective compound. The study demonstrated that the production and the efficacy of VOCs by Aureobasidium could be directly related to the specific species and pathosystem and uncovers new possibilities for searching more efficient VOCs producing strains in unconventional habitats other than plants.


Sign in / Sign up

Export Citation Format

Share Document