scholarly journals Characterization of l-arginine uptake by plasma membrane vesicles isolated from cultured pulmonary artery endothelial cells

1998 ◽  
Vol 1369 (1) ◽  
pp. 173-183 ◽  
Author(s):  
S.I. Zharikov ◽  
E.R. Block
1988 ◽  
Vol 254 (6) ◽  
pp. C781-C787 ◽  
Author(s):  
N. P. Sheridan ◽  
E. R. Block

Plasma membrane vesicles were prepared from porcine pulmonary artery endothelial cells by a dextran-polyethylene glycol two-phase system. Specific carrier-mediated transport of 5-hydroxytryptamine (5-HT) into the vesicles was examined. Transport required a Na+ gradient (out greater than in) across the membrane, and accumulated 5-HT rapidly effluxed out of the vesicles when the ionophore gramicidin was added. Transport was inhibited by the antidepressant imipramine. 5-HT transport into plasma membrane vesicles appeared saturable and exhibited Michaelis-Menten kinetics (Km 7.4 microM, maximal velocity 217 pmol.min-1.mg membrane protein-1). A 24-h exposure to 95% O2 at 1 atmosphere absolute resulted in a 21% decrease (P less than 0.05) in specific 5-HT transport by plasma membrane vesicles. Hyperoxia also caused a significant (P less than 0.01) decrease in plasma membrane fluidity, as measured with the fluorescence probe 1,6-diphenyl-1,3,5-hexatriene. These results indicate that pulmonary artery endothelial cell plasma membrane vesicles provide a good model for studying 5-HT transport activity in vitro. Hyperoxia affects plasma membrane fluidity and 5-HT transport in pulmonary artery endothelial cells, suggesting a possible cause-and-effect relationship between the two.


1995 ◽  
Vol 306 (1) ◽  
pp. 299-303 ◽  
Author(s):  
G Benaim ◽  
S N J Moreno ◽  
G Hutchinson ◽  
V Cervino ◽  
T Hermoso ◽  
...  

Despite previous reports [McLaughlin (1985) Mol. Biochem. Parasitol. 15, 189-201; Ghosh, Ray, Sarkar and Bhaduri (1990) J. Biol. Chem. 265, 11345-11351; Mazumder, Mukherjee, Ghosh, Ray and Bhaduri (1992) J. Biol. Chem. 267, 18440-18446] suggesting that the plasma-membrane Ca(2+)-ATPases of different trypanosomatids differ from the Ca2+ pumps present in mammalian cells, Trypanosoma cruzi plasma-membrane Ca(2+)-ATPase shares several characteristics with the Ca2+ pumps present in other systems. This enzyme could be partially purified from epimastigote plasma-membrane vesicles using calmodulin-agarose affinity chromatography. The activity of the partially purified enzyme was stimulated by T. cruzi or bovine brain calmodulin. In addition, the enzyme cross-reacted with antiserum and monoclonal antibody 5F10 raised against human red-blood-cell Ca(2+)-ATPase, has a molecular mass of 140 kDa and forms Ca(2+)-dependent hydroxylamine-sensitive phosphorylated intermediates. These results, together with its high sensitivity to vanadate, indicate that this enzyme belongs to the P-type class of ionic pumps.


2006 ◽  
Vol 59 (5) ◽  
pp. 302 ◽  
Author(s):  
Joseph G. Altin ◽  
Martin G. Banwell ◽  
Phillip A. Coghlan ◽  
Christopher J. Easton ◽  
Michael R. Nairn ◽  
...  

A six-step reaction sequence is described for the preparation of compound 1 (NTA3-DTDA), a membrane-penetrating and potent chelator that can be incorporated into liposomes and plasma membrane vesicles containing antigens and thus allowing targeted delivery of such assemblies to a variety of cells for the purposes of eliciting anti-tumour responses. Full spectroscopic characterization of this dendritic-type compound as well as certain of its precursors is reported.


Sign in / Sign up

Export Citation Format

Share Document