Small molecule inhibitors of the RNA-dependent protein kinase

2003 ◽  
Vol 308 (1) ◽  
pp. 50-57 ◽  
Author(s):  
Narasimham V. Jammi ◽  
Landon R. Whitby ◽  
Peter A. Beal
2013 ◽  
Vol 56 (7) ◽  
pp. 3068-3077 ◽  
Author(s):  
Sebastian Lourido ◽  
Chao Zhang ◽  
Michael S. Lopez ◽  
Keliang Tang ◽  
Jennifer Barks ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Gerson S. Profeta ◽  
Caio V. dos Reis ◽  
André da S. Santiago ◽  
Paulo H. C. Godoi ◽  
Angela M. Fala ◽  
...  

Abstract Calcium/Calmodulin-dependent Protein Kinase Kinase 2 (CAMKK2) acts as a signaling hub, receiving signals from various regulatory pathways and decoding them via phosphorylation of downstream protein kinases - such as AMPK (AMP-activated protein kinase) and CAMK types I and IV. CAMKK2 relevance is highlighted by its constitutive activity being implicated in several human pathologies. However, at present, there are no selective small-molecule inhibitors available for this protein kinase. Moreover, CAMKK2 and its closest human homolog, CAMKK1, are thought to have overlapping biological roles. Here we present six new co-structures of potent ligands bound to CAMKK2 identified from a library of commercially-available kinase inhibitors. Enzyme assays confirmed that most of these compounds are equipotent inhibitors of both human CAMKKs and isothermal titration calorimetry (ITC) revealed that binding to some of these molecules to CAMKK2 is enthalpy driven. We expect our results to advance current efforts to discover small molecule kinase inhibitors selective to each human CAMKK.


2018 ◽  
Vol 293 (21) ◽  
pp. 8173-8181 ◽  
Author(s):  
Marcel J. C. Bijvelds ◽  
Gary Tresadern ◽  
Ann Hellemans ◽  
Karine Smans ◽  
Natascha D. A. Nieuwenhuijze ◽  
...  

The guanosine 3′,5′-cyclic monophosphate (cGMP)-dependent protein kinase II (cGKII) serine/threonine kinase relays signaling through guanylyl cyclase C (GCC) to control intestinal fluid homeostasis. Here, we report the discovery of small-molecule inhibitors of cGKII. These inhibitors were imidazole-aminopyrimidines, which blocked recombinant human cGKII at submicromolar concentrations but exhibited comparatively little activity toward the phylogenetically related protein kinases cGKI and cAMP-dependent protein kinase (PKA). Whereas aminopyrimidyl motifs are common in protein kinase inhibitors, molecular modeling of these imidazole-aminopyrimidines in the ATP-binding pocket of cGKII indicated an unconventional binding mode that directs their amine substituent into a narrow pocket delineated by hydrophobic residues of the hinge and the αC-helix. Crucially, this set of residues included the Leu-530 gatekeeper, which is not conserved in cGKI and PKA. In intestinal organoids, these compounds blocked cGKII-dependent phosphorylation of the vasodilator-stimulated phosphoprotein (VASP). In mouse small intestinal tissue, cGKII inhibition significantly attenuated the anion secretory response provoked by the GCC-activating bacterial heat-stable toxin (STa), a frequent cause of infectious secretory diarrhea. In contrast, both PKA-dependent VASP phosphorylation and intestinal anion secretion were unaffected by treatment with these compounds, whereas experiments with T84 cells indicated that they weakly inhibit the activity of cAMP-hydrolyzing phosphodiesterases. As these protein kinase inhibitors are the first to display selective inhibition of cGKII, they may expedite research on cGMP signaling and may aid future development of therapeutics for managing diarrheal disease and other pathogenic syndromes that involve cGKII.


2005 ◽  
Vol 48 (24) ◽  
pp. 7829-7846 ◽  
Author(s):  
Ian R. Hardcastle ◽  
Xiaoling Cockcroft ◽  
Nicola J. Curtin ◽  
Marine Desage El-Murr ◽  
Justin J. J. Leahy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document