Identifying in vivo targets of cyclin-dependent kinase inhibitors by affinity chromatography

2002 ◽  
Vol 64 (5-6) ◽  
pp. 819-825 ◽  
Author(s):  
Marie Knockaert ◽  
Laurent Meijer
Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2396
Author(s):  
Nina Schoenwaelder ◽  
Inken Salewski ◽  
Nadja Engel ◽  
Mareike Krause ◽  
Björn Schneider ◽  
...  

Cyclin-dependent kinase inhibitors (CDKi´s) display cytotoxic activity against different malignancies, including head and neck squamous cell carcinomas (HNSCC). By coordinating the DNA damage response, these substances may be combined with cytostatics to enhance cytotoxicity. Here, we investigated the influence of different CDKi´s (palbociclib, dinaciclib, THZ1) on two HNSCC cell lines in monotherapy and combination therapy with clinically-approved drugs (5-FU, Cisplatin, cetuximab). Apoptosis/necrosis, cell cycle, invasiveness, senescence, radiation-induced γ-H2AX DNA double-strand breaks, and effects on the actin filament were studied. Furthermore, the potential to increase tumor immunogenicity was assessed by analyzing Calreticulin translocation and immune relevant surface markers. Finally, an in vivo mouse model was used to analyze the effect of dinaciclib and Cisplatin combination therapy. Dinaciclib, palbociclib, and THZ1 displayed anti-neoplastic activity after low-dose treatment, while the two latter substances slightly enhanced radiosensitivity. Dinaciclib decelerated wound healing, decreased invasiveness, and induced MHC-I, accompanied by high amounts of surface-bound Calreticulin. Numbers of early and late apoptotic cells increased initially (24 h), while necrosis dominated afterward. Antitumoral effects of the selective CDKi palbociclib were weaker, but combinations with 5-FU potentiated effects of the monotherapy. Additionally, CDKi and CDKi/chemotherapy combinations induced MHC I, indicative of enhanced immunogenicity. The in vivo studies revealed a cell line-specific response with best tumor growth control in the combination approach. Global acting CDKi’s should be further investigated as targeting agents for HNSCC, either individually or in combination with selected drugs. The ability of dinaciclib to increase the immunogenicity of tumor cells renders this substance a particularly interesting candidate for immune-based oncological treatment regimens.


Oncogene ◽  
1999 ◽  
Vol 18 (13) ◽  
pp. 2201-2211 ◽  
Author(s):  
Ingeborg Zehbe ◽  
Andreas Rätsch ◽  
Marianna Alunni-Fabbroni ◽  
Annett Burzlaff ◽  
Evi Bakos ◽  
...  

1996 ◽  
Vol 16 (12) ◽  
pp. 6623-6633 ◽  
Author(s):  
P D Adams ◽  
W R Sellers ◽  
S K Sharma ◽  
A D Wu ◽  
C M Nalin ◽  
...  

Understanding how cyclin-cdk complexes recognize their substrates is a central problem in cell cycle biology. We identified an E2F1-derived eight-residue peptide which blocked the binding of cyclin A and E-cdk2 complexes to E2F1 and p21. Short peptides spanning similar sequences in p107, p130, and p21-like cdk inhibitors likewise bound to cyclin A-cdk2 and cyclin E-cdk2. In addition, these peptides promoted formation of stable cyclin A-cdk2 complexes in vitro but inhibited the phosphorylation of the retinoblastoma protein by cyclin A- but not cyclin B-associated kinases. Mutation of the cyclin-cdk2 binding motifs in p107 and E2F1 likewise prevented their phosphorylation by cyclin A-associated kinases in vitro. The cdk inhibitor p21 was found to contain two functional copies of this recognition motif, as determined by in vitro kinase binding/inhibition assays and in vivo growth suppression assays. Thus, these studies have identified a cyclin A- and E-cdk2 substrate recognition motif. Furthermore, these data suggest that p21-like cdk inhibitors function, at least in part, by blocking the interaction of substrates with cyclin-cdk2 complexes.


1998 ◽  
Vol 143 (2) ◽  
pp. 457-467 ◽  
Author(s):  
David S. Park ◽  
Erick J. Morris ◽  
Jaya Padmanabhan ◽  
Michael L. Shelanski ◽  
Herbert M. Geller ◽  
...  

Previous reports have indicated that DNA-damaging treatments including certain anticancer therapeutics cause death of postmitotic nerve cells both in vitro and in vivo. Accordingly, it has become important to understand the signaling events that control this process. We recently hypothesized that certain cell cycle molecules may play an important role in neuronal death signaling evoked by DNA damage. Consequently, we examined whether cyclin-dependent kinase inhibitors (CKIs) and dominant-negative (DN) cyclin-dependent kinases (CDK) protect sympathetic and cortical neurons against DNA-damaging conditions. We show that Sindbis virus–induced expression of CKIs p16ink4, p21waf/cip1, and p27kip1, as well as DN-Cdk4 and 6, but not DN-Cdk2 or 3, protect sympathetic neurons against UV irradiation– and AraC-induced death. We also demonstrate that the CKIs p16 and p27 as well as DN-Cdk4 and 6 but not DN-Cdk2 or 3 protect cortical neurons from the DNA damaging agent camptothecin. Finally, in consonance with our hypothesis and these results, cyclin D1–associated kinase activity is rapidly and highly elevated in cortical neurons upon camptothecin treatment. These results suggest that postmitotic neurons may utilize Cdk4 and 6, signals that normally control proliferation, to mediate death signaling resulting from DNA-damaging conditions.


2020 ◽  
Author(s):  
Kai Wang ◽  
Ruth Ndathe ◽  
Narender Kumar ◽  
Elizabeth A. Zeringue ◽  
Naohiro Kato ◽  
...  

AbstractEndoreplication, also known as endoreduplication, is a modified cell cycle in which DNA is replicated without subsequent cell division. Endoreplication plays important roles in both normal plant development and in stress responses. The SIAMESE (SIM) gene of Arabidopsis (Arabidopsis thaliana) encodes a cyclin-dependent kinase inhibitor that plays an central role in establishing endoreplication, and is the founding member of the SIAMESE-RELATED (SMR) family of plant-specific cyclin-dependent kinase inhibitors genes. However, there has been conflicting evidence regarding which specific cyclin/CDK complexes are inhibited by SIM in vivo. In this work, we use genetic evidence to show that SIM likely inhibits both CDKA;1- and CDKB1-containing CDK complexes in vivo to promote endoreplication in developing Arabidopsis trichomes. We also show that SIM interacts with CYCA2;3, a binding partner of CDKB1;1, via SIM Motif A, which we previously identified as a CDK-binding motif. In contrast, SIM Motif C, which has been indicated as a cyclin binding motif in other contexts, appears to be relatively unimportant for interaction between SIM and CYCA2;3. Together with earlier results, our work suggests that SIM and other SMRs likely have a multivalent interaction with CYC/CDK complexes.One sentence summaryThe cyclin-dependent kinase inhibitor SIAMESE (SIM) targets both CDKA;1 and CDKB1 complexes to establish endoreplication, and that SIM interacts with the cyclin CYCA2;3 via SIM Motif A.


2010 ◽  
Vol 10 ◽  
pp. 1731-1748 ◽  
Author(s):  
Driss El Kebir ◽  
János G. Filep

Neutrophil granulocytes play a central role in host defense to infection and tissue injury. Their timely removal is essential for resolution of inflammation. Increasing evidence identified neutrophil apoptosis as an important control point in the development and resolution of inflammation. Delayed apoptosis and/or impaired clearance of neutrophils aggravate and prolong tissue injury. This review will focus on outside-in signals that provide survival cues for neutrophils, the hierarchy of pro- and antiapoptotic signals, and molecular targets in the antiapoptotic signaling network that can be exploited by endogenously produced bioactive lipids, such as lipoxins or pharmacological inhibitors, including cyclin-dependent kinase inhibitors, to redirect neutrophils to apoptosis in vivo, thus promoting resolution of inflammation.


2011 ◽  
Vol 18 (6) ◽  
pp. 743-757 ◽  
Author(s):  
Maria Grazia Vizioli ◽  
Patricia A Possik ◽  
Eva Tarantino ◽  
Katrin Meissl ◽  
Maria Grazia Borrello ◽  
...  

Oncogene-induced senescence (OIS) is a growth arrest triggered by the enforced expression of cancer-promoting genes and acts as a barrier against malignant transformation in vivo. In this study, by a combination of in vitro and in vivo approaches, we investigate the role of OIS in tumours originating from the thyroid epithelium. We found that expression of different thyroid tumour-associated oncogenes in primary human thyrocytes triggers senescence, as demonstrated by the presence of OIS hallmarks: changes in cell morphology, accumulation of SA-β-Gal and senescence-associated heterochromatic foci, and upregulation of transcription of the cyclin-dependent kinase inhibitors p16INK4a and p21CIP1. Furthermore, immunohistochemical analysis of a panel of thyroid tumours characterised by different aggressiveness showed that the expression of OIS markers such as p16INK4a, p21CIP1 and IGFBP7 is upregulated at early stages, and lost during thyroid tumour progression. Taken together, our results suggest a role of OIS in thyroid carcinogenesis.


Zygote ◽  
2000 ◽  
Vol 8 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Stéphane Flament ◽  
Jean-François Bodart ◽  
Marc Bertout ◽  
Edith Browaeys ◽  
Arlette Rousseau ◽  
...  

The effects of the new cyclin-dependent kinase inhibitors, roscovitine and olomoucine, on oocytes and eggs of Xenopus laevis were investigated and compared with those of 6-dimethylamino purine (6-DMAP). The inhibitory properties of 6-DMAP, olomoucine and roscovitine towards p34cdc2-cyclin B isolated from Xenopus eggs revealed K-IC50 values of 300, 40 and 10 μM respectively. The three compounds inhibited progesterone-induced maturation with M-IC50 values of 200, 100 and 20 μM. These values were consistent with the K-IC50 values but the ratio M-IC50/K-IC50 was higher for roscovitine and olomoucine than for 6-DMAP. The disappearance of spindle and condensed chromosomes without pronucleus formation was observed when 1 mM 6-DMAP was applied for 4 h at germinal vesicle breakdown or at metaphase II, whereas no effect was observed using 1 mM olomoucine or 50 μM roscovitine. Changes in the electrophoretic mobility of p34cdc2 and erk2 were observed only in homogenates of matured oocytes or eggs exposed for 4 h to 1 mM 6-DMAP. When the drugs were microinjected into matured oocytes, olomoucine (100 μM) and roscovitine (50 μM) induced pronucleus formation more efficiently than did 6-DMAP (100 μM). Taken together, these results demonstrate that Xenopus oocytes possess a lower permeability to olomoucine and roscovitine and that these new compounds are suitable for in vivo studies after germinal vesicle breakdown provided they are microinjected.


Sign in / Sign up

Export Citation Format

Share Document