Reefs of an uninhabited Caribbean island: fishes, benthic habitat, and opportunities to discern reef fishery impact

2002 ◽  
Vol 106 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Margaret W. Miller ◽  
Cynthia L. Gerstner
Author(s):  
Vincentius P. Siregar ◽  
Sam Wouthuyzen ◽  
Andriani Sunuddin ◽  
Ari Anggoro ◽  
Ade Ayu Mustika

Shallow marine waters comprise diverse benthic types forming habitats for reef fish community, which important for the livelihood of coastal and small island inhabitants. Satellite imagery provide synoptic map of benthic habitat and further utilized to estimate reef fish stock. The objective of this research was to estimate reef fish stock in complex coral reef of Pulau Pari, by utilizing high resolution satellite imagery of the WorldView-2 in combination with field data such as visual census of reef fish. Field survey was conducted between May-August 2013 with 160 sampling points representing four sites (north, south, west, and east). The image was analy-zed and grouped into five classes of benthic habitats i.e., live coral (LC), dead coral (DC), sand (Sa), seagrass (Sg), and mix (Mx) (combination seagrass+coral and seagrass+sand). The overall accuracy of benthic habitat map was 78%. Field survey revealed that the highest live coral cover (58%) was found at the north site with fish density 3.69 and 1.50 ind/m2at 3 and 10 m depth, respectively. Meanwhile, the lowest live coral cover (18%) was found at the south site with fish density 2.79 and 2.18  ind/m2 at 3 and 10 m depth, respectively. Interpolation on fish density data in each habitat class resulted in standing stock reef fish estimation:  LC (5,340,698 ind), DC (56,254,356 ind), Sa (13,370,154 ind), Sg (1,776,195 ind) and Mx (14,557,680 ind). Keywords: mapping, satellite imagery, benthic habitat, reef fish, stock estimation


Data Series ◽  
10.3133/ds320 ◽  
2008 ◽  
Author(s):  
Guy R. Cochrane ◽  
Jonathan A. Warrick ◽  
Yael Sagy ◽  
David Finlayson ◽  
Jodi Harney

2021 ◽  
Author(s):  
Lou Frotté ◽  
Alexandre Bec ◽  
Cédric Hubas ◽  
Fanny Perrière ◽  
Sébastien Cordonnier ◽  
...  

Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 48
Author(s):  
Margaret F.J. Dolan ◽  
Rebecca E. Ross ◽  
Jon Albretsen ◽  
Jofrid Skarðhamar ◽  
Genoveva Gonzalez-Mirelis ◽  
...  

The use of habitat distribution models (HDMs) has become common in benthic habitat mapping for combining limited seabed observations with full-coverage environmental data to produce classified maps showing predicted habitat distribution for an entire study area. However, relatively few HDMs include oceanographic predictors, or present spatial validity or uncertainty analyses to support the classified predictions. Without reference studies it can be challenging to assess which type of oceanographic model data should be used, or developed, for this purpose. In this study, we compare biotope maps built using predictor variable suites from three different oceanographic models with differing levels of detail on near-bottom conditions. These results are compared with a baseline model without oceanographic predictors. We use associated spatial validity and uncertainty analyses to assess which oceanographic data may be best suited to biotope mapping. Our results show how spatial validity and uncertainty metrics capture differences between HDM outputs which are otherwise not apparent from standard non-spatial accuracy assessments or the classified maps themselves. We conclude that biotope HDMs incorporating high-resolution, preferably bottom-optimised, oceanography data can best minimise spatial uncertainty and maximise spatial validity. Furthermore, our results suggest that incorporating coarser oceanographic data may lead to more uncertainty than omitting such data.


Coral Reefs ◽  
2021 ◽  
Author(s):  
Brae A. Price ◽  
Euan S. Harvey ◽  
Sangeeta Mangubhai ◽  
Benjamin J. Saunders ◽  
Marji Puotinen ◽  
...  

2021 ◽  
Vol 3 ◽  
pp. 100015
Author(s):  
Benjamin Misiuk ◽  
Myriam Lacharité ◽  
Craig J. Brown

Sign in / Sign up

Export Citation Format

Share Document