scholarly journals Localization of Divalent Cation-Binding Site in the Pore of a Small Conductance Ca2+-Activated K+ Channel and Its Role in Determining Current-Voltage Relationship

2002 ◽  
Vol 83 (5) ◽  
pp. 2528-2538 ◽  
Author(s):  
Heun Soh ◽  
Chul-Seung Park
1992 ◽  
Vol 100 (2) ◽  
pp. 181-193 ◽  
Author(s):  
S Spires ◽  
T Begenisich

The actions of divalent cations on voltage-gated ion channels suggest that these cations bind to specific sites and directly influence gating kinetics. We have examined some chemical properties of the external divalent cation binding sites on neuronal potassium channels. Patch clamp techniques were used to measure the electrophysiological properties of these channels and Zn ions were used to probe the divalent cation binding site. The channel activation kinetics were greatly (three- to fourfold) slowed by low (2-5 mM) concentrations of Zn; deactivation kinetics were only slightly affected. These effects of Zn were inhibited by low solution pH in a manner consistent with competition between Zn and H ions for a single site. The apparent inhibitory pK for this site was near 7.2. Treatment of the neurons with specific amino acid reagents implicated amino, but no histidyl or sulfhydryl, residues in divalent cation binding.


2006 ◽  
Vol 127 (2) ◽  
pp. 205-215 ◽  
Author(s):  
Marc Paulais ◽  
Sahran Lachheb ◽  
Jacques Teulon

This study investigates the presence and properties of Na+-activated K+ (KNa) channels in epithelial renal cells. Using real-time PCR on mouse microdissected nephron segments, we show that Slo2.2 mRNA, which encodes for the KNa channels of excitable cells, is expressed in the medullary and cortical thick ascending limbs of Henle's loop, but not in the other parts of the nephron. Patch-clamp analysis revealed the presence of a high conductance K+ channel in the basolateral membrane of both the medullary and cortical thick ascending limbs. This channel was highly K+ selective (PK/PNa ∼ 20), its conductance ranged from 140 to 180 pS with subconductance levels, and its current/voltage relationship displayed intermediate, Na+-dependent, inward rectification. Internal Na+ and Cl− activated the channel with 50% effective concentrations (EC50) and Hill coefficients (nH) of 30 ± 1 mM and 3.9 ± 0.5 for internal Na+, and 35 ± 10 mM and 1.3 ± 0.25 for internal Cl−. Channel activity was unaltered by internal ATP (2 mM) and by internal pH, but clearly decreased when internal free Ca2+ concentration increased. This is the first demonstration of the presence in the epithelial cell membrane of a functional, Na+-activated, large-conductance K+ channel that closely resembles native KNa channels of excitable cells. This Slo2.2 type, Na+- and Cl−-activated K+ channel is primarily located in the thick ascending limb, a major renal site of transcellular NaCl reabsorption.


Sign in / Sign up

Export Citation Format

Share Document