resistance protein
Recently Published Documents


TOTAL DOCUMENTS

2028
(FIVE YEARS 267)

H-INDEX

125
(FIVE YEARS 7)

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 313
Author(s):  
Małgorzata Szczygieł ◽  
Marcin Markiewicz ◽  
Milena Julia Szafraniec ◽  
Agnieszka Hojda ◽  
Leszek Fiedor ◽  
...  

The breast cancer resistance protein (BCRP or ABCG2) involved in cancer multidrug resistance (MDR), transports many hydrophobic compounds, including a number of anti-cancer drugs. Our comprehensive study using a mouse model reveals that a subcutaneously growing tumor strongly affects the expression of BCRP in the host’s normal organs on both the transcriptional and translational level. Additionally, the efflux of BCRP substrates is markedly enhanced. The levels of BCRP and its transcript in normal tissues distant from the tumor site correlate with tumor growth and the levels of cytokines in the peripheral blood. Thus, oncogenic stress causes transient systemic upregulation of BCRP in the host’s normal tissues and organs, which is possibly mediated via cytokines. Because BCRP upregulation takes place in many organs as early as the initial stages of tumor development, it reveals a most basic mechanism that may be responsible for the induction of primary MDR. We hypothesize that such effects are not tumor-specific responses, but rather constitute a more universal defense strategy. The xenobiotic transporters are systemically mobilized due to various stresses, seemingly in a pre-emptive manner so that the body can be quickly and efficiently detoxified. Our findings shed new light on the biology of cancer and on the complexity of cancer–host interactions and are highly relevant to cancer therapies as well as to the design of new generations of therapeutics and personalized medicine.


2022 ◽  
Vol 18 ◽  
Author(s):  
Bart. W. Driesen ◽  
Michiel Voskuil ◽  
Heynric B. Grotenhuis

Abstract: The Fontan operation was introduced in 1968. For congenital malformations where biventricular repair is not suitable, the Fontan procedure has provided a long-term palliation strategy with improved outcome compared to the initially developed procedures. Despite these improvements, several complications merely as a result of a failing Fontan circulation (including myocardial dysfunction, arrhythmias, increased pulmonary vascular resistance, protein losing enteropathy, hepatic dysfunction, plastic bronchitis and thrombo-embolism) will limit life-expectancy in this patient cohort. This review provides an overview of the most common complications of the Fontan circulation and the currently available treatment options.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12594
Author(s):  
Vivian Osei Poku ◽  
Surtaj Hussain Iram

Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent efflux transporter, and responsible for the transport of a broad spectrum of xenobiotics, toxins, and physiological substrates across the plasma membrane. As an efflux pump, it plays a significant role in the absorption and disposition of drugs including anticancer drugs, antivirals, antimalarials, and antibiotics and their metabolites across physiological barriers in cells. MRP1 is also known to aid in the regulation of several physiological processes such as redox homeostasis, steroid metabolism, and tissue defense. However, its overexpression has been reported to be a key clinical marker associated with multidrug resistance (MDR) of several types of cancers including lung cancer, childhood neuroblastoma, breast and prostate carcinomas, often resulting in a higher risk of treatment failure and shortened survival rates in cancer patients. Aside MDR, overexpression of MRP1 is also implicated in the development of neurodegenerative and cardiovascular diseases. Due to the cellular importance of MRP1, the identification and biochemical/molecular characterization of modulators of MRP1 activity and expression levels are of key interest to cancer research and beyond. This review primarily aims at highlighting the physiological and pharmacological importance of MRP1, known MRP1 modulators, current challenges encountered, and the potential benefits of conducting further research on the MRP1 transporter.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Junmei Jiang ◽  
Jun Chen ◽  
Liting Luo ◽  
Lujie Wang ◽  
Hao Ouyang ◽  
...  

SGT1 (suppressor of the skp1 G2 allele) is an important plant disease resistance-related protein, which plays an important role in plant resistance to pathogens and regulates signal transduction during the process of plant disease resistance. In this study, we analyzed the expression profile of SbSGT1 in sorghum under phytohormones treatment. Quantitative real-time PCR results showed that SbSGT1 was most expressed in sorghum leaves, and could respond to plant hormones such as auxin, abscisic acid, salicylic acid, and brassinolide. Subsequently, we determined the optimal soluble prokaryotic expression conditions for SbSGT1 and purified it using a protein purification system in order to evaluate its potential interactions with plant hormones. Microscale thermophoretic analysis showed that SbSGT1 exhibited significant interactions with indole-3-acetic acid (IAA), with a Kd value of 1.5934. Furthermore, the transient expression of SbSGT1 in Nicotiana benthamiana indicated that treatment with exogenous auxin could inhibit SbSGT1 expression, both at the transcriptional and translational level, demonstrating that there exists an interaction between SbSGT1 and auxin.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 61
Author(s):  
Hana Dufková ◽  
Miroslav Berka ◽  
Marie Greplová ◽  
Šarlota Shejbalová ◽  
Romana Hampejsová ◽  
...  

Wild Solanum accessions are a treasured source of resistance against pathogens, including oomycete Phytophthora infestans, causing late blight disease. Here, Solanum pinnatisectum, Solanum tuberosum, and the somatic hybrid between these two lines were analyzed, representing resistant, susceptible, and moderately resistant genotypes, respectively. Proteome and metabolome analyses showed that the infection had the highest impact on leaves of the resistant plant and indicated, among others, an extensive remodeling of the leaf lipidome. The lipidome profiling confirmed an accumulation of glycerolipids, a depletion in the total pool of glycerophospholipids, and showed considerable differences between the lipidome composition of resistant and susceptible genotypes. The analysis of putative resistance markers pinpointed more than 100 molecules that positively correlated with resistance including phenolics and cysteamine, a compound with known antimicrobial activity. Putative resistance protein markers were targeted in an additional 12 genotypes with contrasting resistance to P. infestans. At least 27 proteins showed a negative correlation with the susceptibility including HSP70-2, endochitinase B, WPP domain-containing protein, and cyclase 3. In summary, these findings provide insights into molecular mechanisms of resistance against P. infestans and present novel targets for selective breeding.


2021 ◽  
Author(s):  
Peng Zhang ◽  
Daqing Mao ◽  
Huihui Gao ◽  
Liyang Zheng ◽  
Zeyou Chen ◽  
...  

AbstractMultidrug-resistant plasmid-carrying bacteria are of particular clinical concern as they could transfer antibiotic resistance genes to other bacterial species. However, little is known whether evolutionary adaptation of plasmid-carrying bacteria after long-term antibiotic exposure could affect their subsequent colonization of the human gut. Herein, we combined a long-term evolutionary model based on Escherichia coli K-12 MG1655 and the multidrug-resistant plasmid RP4 with in vivo colonization experiments in mice. We found that the evolutionary adaptation of plasmid-carrying bacteria to antibiotic exposure facilitated colonization of the murine gut and subsequent plasmid transfer to gut bacteria. The evolved plasmid-carrying bacteria exhibited phenotypic alterations, including multidrug resistance, enhanced bacterial growth and biofilm formation capability and decreased plasmid fitness cost, which might be jointly caused by chromosomal mutations (SNPs in rpoC, proQ, and hcaT) and transcriptional modifications. The upregulated transcriptional genes, e.g., type 1 fimbrial-protein pilus (fimA and fimH) and the surface adhesin gene (flu) were likely responsible for the enhanced biofilm-forming capacity. The gene tnaA that encodes a tryptophanase-catalyzing indole formation was transcriptionally upregulated, and increased indole products participated in facilitating the maximum population density of the evolved strains. Furthermore, several chromosomal genes encoding efflux pumps (acriflavine resistance proteins A and B (acrA, acrB), outer-membrane protein (tolC), multidrug-resistance protein (mdtM), and macrolide export proteins A and B (macA, macB)) were transcriptionally upregulated, while most plasmid-harboring genes (conjugal transfer protein (traF) and (trbB), replication protein gene (trfA), beta-lactamase TEM precursor (blaTEM), aminoglycoside 3'-phosphotransferase (aphA) and tetracycline resistance protein A (tetA)) were downregulated. Collectively, these findings demonstrated that evolutionary adaptation of plasmid-carrying bacteria in an antibiotic-influenced environment facilitated colonization of the murine gut by the bacteria and plasmids.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wei Huang ◽  
Jun Zhang ◽  
Biao Dong ◽  
Haiting Chen ◽  
Liwei Shao ◽  
...  

Endometrial cancer (EC) is one of the most frequent gynecological tumors, and chemoresistance is a major obstacle to improving the prognosis of EC patients. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have recently emerged as crucial chemoresistance regulators that alter the levels of downstream target genes. Multidrug Resistance Protein 7 (MRP-7/ABCC10) is an ATP-binding cassette transporter that causes the resistance to anti-cancer drugs. The purpose of this research is to determine whether MRP-7 has a role in mediating the sensitivity of EC cells to paclitaxel and whether the expression of MRP-7 is regulated by miR-98 and lncRNA NEAT1. We reported that the levels of MRP-7 were significantly increased in EC tissues and associated with an unfavorable prognosis. Downregulation of MRP-7 in EC cells sensitized these cells to paclitaxel and reduced cell invasion. PLAUR serves as a downstream molecule of MRP-7 and facilitates paclitaxel resistance and EC cell invasiveness. Moreover, miR-98 serves as a tumor suppressor to inhibit MRP-7 expression, leading to the repression of paclitaxel resistance. Furthermore, a novel lncRNA, NEAT1, was identified as a suppressor of miR-98, and NEAT1 could upregulate MRP-7 levels by reducing the expression of miR-98. Taken together, these findings demonstrate that upregulation of MRP-7 and NEAT1, and downregulation of miR-98 have important roles in conferring paclitaxel resistance to EC cells. The modulation of these molecules may help overcome the chemoresistance against paclitaxel in EC cells.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7390
Author(s):  
Chung-Ping Yu ◽  
Pei-Ying Li ◽  
Szu-Yu Chen ◽  
Shiuan-Pey Lin ◽  
Yu-Chi Hou

Breast cancer resistance protein (BCRP), one of the ATP-binding cassette (ABC) transporters, was associated with the multidrug resistance (MDR) of chemotherapy. Magnolol (MN) and honokiol (HK) are major bioactive polyphenols of Magnolia officinalis. This study investigated the effects of MN and HK on the function and expression of BCRP for the purpose of developing BCRP inhibitor to overcome MDR. Cell lines including MDCKII-BCRP and MDCKII-WT were used for evaluating the function and expression of BCRP. The results showed that MN (100–12.5 µM) and HK (100–12.5 µM) significantly decreased the function of BCRP by 80~12% and 67~14%, respectively. In addition, MN and HK were verified as substrates of BCRP. Furthermore, MN and HK reduced the protein expression of BCRP, and inhibited the phosphorylation of epidermal growth factor receptor (EGFR) and phosphatidylinositol 3-kinase (PI3K). In conclusion, both MN and HK decreased the function and expression of BCRP via EGFR/PI3K signaling pathway. Therefore, both compounds were promising candidates for reversing the MDR of chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document