excitable cells
Recently Published Documents


TOTAL DOCUMENTS

637
(FIVE YEARS 143)

H-INDEX

65
(FIVE YEARS 6)

2022 ◽  
Vol 23 (2) ◽  
pp. 827
Author(s):  
Léa Réthoré ◽  
Joohee Park ◽  
Jérôme Montnach ◽  
Sébastien Nicolas ◽  
Joseph Khoury ◽  
...  

Thanks to the crosstalk between Na+ and Ca2+ channels, Na+ and Ca2+ homeostasis interplay in so-called excitable cells enables the generation of action potential in response to electrical stimulation. Here, we investigated the impact of persistent activation of voltage-gated Na+ (NaV) channels by neurotoxins, such as veratridine (VTD), on intracellular Ca2+ concentration ([Ca2+]i) in a model of excitable cells, the rat pituitary GH3b6 cells, in order to identify the molecular actors involved in Na+-Ca2+ homeostasis crosstalk. By combining RT-qPCR, immunoblotting, immunocytochemistry, and patch-clamp techniques, we showed that GH3b6 cells predominantly express the NaV1.3 channel subtype, which likely endorses their voltage-activated Na+ currents. Notably, these Na+ currents were blocked by ICA-121431 and activated by the β-scorpion toxin Tf2, two selective NaV1.3 channel ligands. Using Fura-2, we showed that VTD induced a [Ca2+]i increase. This effect was suppressed by the selective NaV channel blocker tetrodotoxin, as well by the selective L-type CaV channel (LTCC) blocker nifedipine. We also evidenced that crobenetine, a NaV channel blocker, abolished VTD-induced [Ca2+]i elevation, while it had no effects on LTCC. Altogether, our findings highlight a crosstalk between NaV and LTCC in GH3b6 cells, providing a new insight into the mode of action of neurotoxins.


2022 ◽  
Vol 15 (1) ◽  
pp. 81
Author(s):  
Zsigmond Máté Kovács ◽  
Csaba Dienes ◽  
Tamás Hézső ◽  
János Almássy ◽  
János Magyar ◽  
...  

Transient receptor potential melastatin 4 is a unique member of the TRPM protein family and, similarly to TRPM5, is Ca2+-sensitive and permeable to monovalent but not divalent cations. It is widely expressed in many organs and is involved in several functions by regulating the membrane potential and Ca2+ homeostasis in both excitable and non-excitable cells. This part of the review discusses the pharmacological modulation of TRPM4 by listing, comparing, and describing both endogenous and exogenous activators and inhibitors of the ion channel. Moreover, other strategies used to study TRPM4 functions are listed and described. These strategies include siRNA-mediated silencing of TRPM4, dominant-negative TRPM4 variants, and anti-TRPM4 antibodies. TRPM4 is receiving more and more attention and is likely to be the topic of research in the future.


2021 ◽  
Vol 23 (1) ◽  
pp. 440
Author(s):  
Ricardo de Pascual ◽  
Francesco Calzaferri ◽  
Paula C. Gonzalo ◽  
Rubén Serrano-Nieto ◽  
Cristóbal de los Ríos ◽  
...  

Upon depolarization of chromaffin cells (CCs), a prompt release of catecholamines occurs. This event is triggered by a subplasmalemmal high-Ca2+ microdomain (HCMD) generated by Ca2+ entry through nearby voltage-activated calcium channels. HCMD is efficiently cleared by local mitochondria that avidly take up Ca2+ through their uniporter (MICU), then released back to the cytosol through mitochondrial Na+/Ca2+ exchanger (MNCX). We found that newly synthesized derivative ITH15004 facilitated the release of catecholamines triggered from high K+-depolarized bovine CCs. Such effect seemed to be due to regulation of mitochondrial Ca2+ circulation because: (i) FCCP-potentiated secretory responses decay was prevented by ITH15004; (ii) combination of FCCP and ITH15004 exerted additive secretion potentiation; (iii) such additive potentiation was dissipated by the MICU blocker ruthenium red (RR) or the MNCX blocker CGP37157 (CGP); (iv) combination of FCCP and ITH15004 produced both additive augmentation of cytosolic Ca2+ concentrations ([Ca2+]c) K+-challenged BCCs, and (v) non-inactivated [Ca2+]c transient when exposed to RR or CGP. On pharmacological grounds, data suggest that ITH15004 facilitates exocytosis by acting on mitochondria-controlled Ca2+ handling during K+ depolarization. These observations clearly show that ITH15004 is a novel pharmacological tool to study the role of mitochondria in the regulation of the bioenergetics and exocytosis in excitable cells.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 86
Author(s):  
Tzu-Hsien Chuang ◽  
Hsin-Yen Cho ◽  
Sheng-Nan Wu

Sparsentan is viewed as a dual antagonist of endothelin type A (ETA) receptor and angiotensin II (AngII) receptor and it could be beneficial in patients with focal segmental glomerulosclerosis. Moreover, it could improve glomerular filtration rate and augment protective tissue remodeling in mouse models of focal segmental glomerulosclerosis. The ionic mechanisms through which it interacts with the magnitude and/or gating kinetics of ionic currents in excitable cells were not thoroughly investigated. Herein, we aimed to examine the effects of varying sparsentan concentrations on ionic currents residing in pituitary GH3 somatolactotrophs. From whole-cell current recordings made in GH3 cells, sparsentan (0.3–100 μM) differentially inhibited the peak and late components of voltage-gated Na+ current (INa). The IC50 value of sparsentan required to exert a reduction in peak and late INa in GH3 cells was 15.04 and 1.21 μM, respectively; meanwhile, the KD value estimated from its shortening in the slow component of INa inactivation time constant was 2.09 μM. The sparsentan (10 μM) presence did not change the overall current–voltage relationship of INa; however, the steady-state inactivation curve of the current was shifted to more negative potential in its presence (10 μM), with no change in the gating charge of the curve. The window INa activated by a brief upsloping ramp was decreased during exposure to sparsentan (10 μM); moreover, recovery of peak INa became slowed in its presence. The Tefluthrin (Tef)-stimulated resurgent INa activated in response to abrupt depolarization followed by the descending ramp pulse was additionally attenuated by subsequent application of sparsentan. In continued presence of Tef (3 μM) or β-pompilidotoxin (3 μM), further application of sparsentan (3 μM) reversed their stimulation of INa. However, sparsentan-induced inhibition of INa failed to be overcome by subsequent application of either endothelin 1 (1 μM) or angiotensin II (1 μM); moreover, in continued presence of endothelin (1 μM) or angiotensin II (1 μM), further addition of sparsentan (3 μM) effectively decreased peak INa. Additionally, the application of sparsentan (3 μM) inhibited the peak and late components of erg-mediated K+ current in GH3 cells, although it mildly decreased the amplitude of delayed-rectifier K+ current. Altogether, this study provides a distinct yet unidentified finding that sparsentan may perturb the amplitude or gating of varying ionic currents in excitable cells.


2021 ◽  
Vol 15 (1) ◽  
pp. 40
Author(s):  
Csaba Dienes ◽  
Zsigmond Máté Kovács ◽  
Tamás Hézső ◽  
János Almássy ◽  
János Magyar ◽  
...  

Transient receptor potential melastatin 4 (TRPM4) is a unique member of the TRPM protein family and, similarly to TRPM5, is Ca2+ sensitive and permeable for monovalent but not divalent cations. It is widely expressed in many organs and is involved in several functions; it regulates membrane potential and Ca2+ homeostasis in both excitable and non-excitable cells. This part of the review discusses the currently available knowledge about the physiological and pathophysiological roles of TRPM4 in various tissues. These include the physiological functions of TRPM4 in the cells of the Langerhans islets of the pancreas, in various immune functions, in the regulation of vascular tone, in respiratory and other neuronal activities, in chemosensation, and in renal and cardiac physiology. TRPM4 contributes to pathological conditions such as overactive bladder, endothelial dysfunction, various types of malignant diseases and central nervous system conditions including stroke and injuries as well as in cardiac conditions such as arrhythmias, hypertrophy, and ischemia-reperfusion injuries. TRPM4 claims more and more attention and is likely to be the topic of research in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paweorn Angsutararux ◽  
Wandi Zhu ◽  
Taylor L. Voelker ◽  
Jonathan R. Silva

The voltage-gated Na+ channel regulates the initiation and propagation of the action potential in excitable cells. The major cardiac isoform NaV1.5, encoded by SCN5A, comprises a monomer with four homologous repeats (I-IV) that each contain a voltage sensing domain (VSD) and pore domain. In native myocytes, NaV1.5 forms a macromolecular complex with NaVβ subunits and other regulatory proteins within the myocyte membrane to maintain normal cardiac function. Disturbance of the NaV complex may manifest as deadly cardiac arrhythmias. Although SCN5A has long been identified as a gene associated with familial atrial fibrillation (AF) and Brugada Syndrome (BrS), other genetic contributors remain poorly understood. Emerging evidence suggests that mutations in the non-covalently interacting NaVβ1 and NaVβ3 are linked to both AF and BrS. Here, we investigated the molecular pathologies of 8 variants in NaVβ1 and NaVβ3. Our results reveal that NaVβ1 and NaVβ3 variants contribute to AF and BrS disease phenotypes by modulating both NaV1.5 expression and gating properties. Most AF-linked variants in the NaVβ1 subunit do not alter the gating kinetics of the sodium channel, but rather modify the channel expression. In contrast, AF-related NaVβ3 variants directly affect channel gating, altering voltage-dependent activation and the time course of recovery from inactivation via the modulation of VSD activation.


Acta Naturae ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 52-64
Author(s):  
Danila V. Kolesov ◽  
Elena L. Sokolinskaya ◽  
Konstantin A. Lukyanov ◽  
Alexey M. Bogdanov

In modern life sciences, the issue of a specific, exogenously directed manipulation of a cells biochemistry is a highly topical one. In the case of electrically excitable cells, the aim of the manipulation is to control the cells electrical activity, with the result being either excitation with subsequent generation of an action potential or inhibition and suppression of the excitatory currents. The techniques of electrical activity stimulation are of particular significance in tackling the most challenging basic problem: figuring out how the nervous system of higher multicellular organisms functions. At this juncture, when neuroscience is gradually abandoning the reductionist approach in favor of the direct investigation of complex neuronal systems, minimally invasive methods for brain tissue stimulation are becoming the basic element in the toolbox of those involved in the field. In this review, we describe three approaches that are based on the delivery of exogenous, genetically encoded molecules sensitive to external stimuli into the nervous tissue. These approaches include optogenetics (Part I) as well as chemogenetics and thermogenetics (Part II), which are significantly different not only in the nature of the stimuli and structure of the appropriate effector proteins, but also in the details of experimental applications. The latter circumstance is an indication that these are rather complementary than competing techniques.


2021 ◽  
Author(s):  
Paul Pfeiffer ◽  
Federico José Barreda Tomás ◽  
Jiameng Wu ◽  
Jan-Hendrik Schleimer ◽  
Imre Vida ◽  
...  

Dynamics of excitable cells and networks depend on the membrane time constant, set by membrane resistance and capacitance. Whereas pharmacological and genetic manipulations of ionic conductances are routine in electrophysiology, experimental control over capacitance remains a challenge. Here, we present capacitance clamp, an approach that allows to mimic a modified capacitance in biological neurons via an unconventional application of the dynamic clamp technique. We first demonstrate the feasibility to quantitatively modulate capacitance in a mathematical neuron model and then confirm the functionality of capacitance clamp in in vitro experiments in granule cells of rodent dentate gyrus with up to threefold virtual capacitance changes. Clamping of capacitance thus constitutes a novel technique to probe and decipher mechanisms of neuronal signaling in ways that were so far inaccessible to experimental electrophysiology.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Danashi Imani Medagoda ◽  
Diego Ghezzi

AbstractOrganic semiconductors have generated substantial interest in neurotechnology and emerged as a promising approach for wireless neuromodulation in fundamental and applied research. Here, we summarise the range of applications that have been proposed so far, including retinal stimulation, excitation and inhibition of cultured neurons and regulation of biological processes in other non-excitable cells from animal and plant origins. We also discuss the key chemical and physical phenomena at the basis of the interaction between materials and cells. Finally, we provide an overview of future perspectives, exciting research opportunities and the remaining challenges hampering the translation of this blooming technology into the clinic and industry.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3062
Author(s):  
Yang Li ◽  
Xue Yang ◽  
Yuequan Shen

Orai channels belong to the calcium release-activated calcium (CRAC) channel family. Orai channels are responsible for the influx of extracellular Ca2+ that is triggered by Ca2+ depletion from the endoplasmic reticulum (ER); this function is essential for many types of non-excitable cells. Extensive structural and functional studies have advanced the knowledge of the molecular mechanism by which Orai channels are activated. However, the gating mechanism that allows Ca2+ permeation through Orai channels is less well explained. Here, we reviewed and summarized the existing structural studies of Orai channels. We detailed the structural features of Orai channels, described structural comparisons of their closed and open states, and finally proposed a “push–pull” model of Ca2+ permeation.


Sign in / Sign up

Export Citation Format

Share Document