scholarly journals Velocity of movement of actin filaments in in vitro motility assay. Measured by fluorescence correlation spectroscopy

1992 ◽  
Vol 61 (5) ◽  
pp. 1267-1280 ◽  
Author(s):  
J. Borejdo ◽  
S. Burlacu
2009 ◽  
Vol 491 (1-2) ◽  
pp. 32-38 ◽  
Author(s):  
Natalia N. Vikhoreva ◽  
Petr G. Vikhorev ◽  
Maria A. Fedorova ◽  
Ralf Hoffmann ◽  
Alf Månsson ◽  
...  

2000 ◽  
Vol 350 (3) ◽  
pp. 693-699 ◽  
Author(s):  
Wu BING ◽  
Adam KNOTT ◽  
Steven B. MARSTON

We have studied the effect of an internal load on the movement of actin filaments over a bed of heavy meromyosin (HMM) in the invitro motility assay. Immobilized α-actinin can bind to actin filaments reversibly and ultimately stop the filaments from moving. Above a critical concentration of α-actinin, thin filament velocity rapidly diminished to zero. The fraction of thin motile filaments decreased linearly to zero with increasing α-actinin concentration. The concentration of α-actinin needed to stop all filaments from moving (0.8µg/ml with actin) was very consistent both within and between experiments. In the present study we have defined the ‘index of retardation’ as the concentration of α-actinin needed to stop all filament movement, and we propose that this index is a measure of the isometric force exerted by HMM on actin filaments. When we measured the effect of immobilized α-actinin on motility in the presence of 10mM Pi we found that the index of retardation was 0.62±0.07 (n = 3) times that in the absence of Pi. This observation is in agreement with the reduction of isometric tension in chemically-skinned muscle due to Pi. In a series of comparative experiments we observed that tropomyosin and troponin increase the index of retardation and that the degree of increase depends upon the tropomyosin isoform studied. The index of retardation of actin is increased 1.8-fold by skeletal-muscle tropomyosin, and 3-fold by both cardiac-muscle and smooth-muscle tropomyosin. In the presence of troponin the index of retardation is 2.9–3.4-fold greater than that of actin with all tropomyosin isoforms.


Acta Naturae ◽  
2013 ◽  
Vol 5 (3) ◽  
pp. 126-129 ◽  
Author(s):  
D. V. Shchepkin ◽  
A. M. Matyushenko ◽  
G. V. Kopylova ◽  
N. V. Artemova ◽  
S. Y. Bershitsky ◽  
...  

We show that the mutations D137L and G126R, which stabilize the central part of the tropomyosin (Tm) molecule, increase both the maximal sliding velocity of the regulated actin filaments in the in vitro motility assay at high Са 2+ concentrations and the Са 2+-sensitivity of the actin-myosin interaction underlying this sliding. Based on an analysis of the recently published data on the structure of the actin-Tmmyosin complex, we suppose that the physiological effects of these mutations in Tm can be accounted for by their influence on the interactions between the central part of Tm and certain sites of the myosin head.


1995 ◽  
Vol 23 (3) ◽  
pp. 401S-401S ◽  
Author(s):  
Daren S. Jeffreys ◽  
Robert J. Eaton ◽  
Clive R. Bagshaw

Lab on a Chip ◽  
2018 ◽  
Vol 18 (20) ◽  
pp. 3196-3206 ◽  
Author(s):  
Till Korten ◽  
Elena Tavkin ◽  
Lara Scharrel ◽  
Vandana Singh Kushwaha ◽  
Stefan Diez

Molecular motors, essential to force-generation and cargo transport within cells, are invaluable tools for powering nanobiotechnological lab-on-a-chip devices.


Sign in / Sign up

Export Citation Format

Share Document