Postsynaptic action potentials do not alter short-term potentiation in the dentate gyrus

1997 ◽  
Vol 758 (1-2) ◽  
pp. 59-68
Author(s):  
Barry Foster ◽  
Thomas L. Richardson
2014 ◽  
Vol 112 (1) ◽  
pp. 22-29 ◽  
Author(s):  
Erik Svensson ◽  
Alex Proekt ◽  
Jian Jing ◽  
Klaudiusz R. Weiss

Transmitter-mediated homosynaptic potentiation is generally implemented by the same transmitter that mediates the excitatory postsynaptic potentials (EPSPs), e.g., glutamate. When a presynaptic neuron contains more than one transmitter, however, potentiation can in principle be implemented by a transmitter different from that which elicits the EPSPs. Neuron B20 in Aplysia contains both dopamine and GABA. Although only dopamine acts as the fast excitatory transmitter at the B20-to-B8 synapse, GABA increases the size of these dopaminergic EPSPs. We now provide evidence that repeated stimulation of B20 potentiates B20-evoked dopaminergic EPSPs in B8 apparently via a postsynaptic mechanism, and short-term potentiation of this synapse is critical for the establishment and maintenance of an egestive network state. We show that GABA can act postsynaptically to increase dopamine currents that are elicited by direct applications of dopamine to B8 and that dopamine is acting on a 5-HT3-like receptor. This potentiation is mediated by GABAB-like receptors as GABAB-receptor agonists and antagonists, respectively, mimicked and blocked the potentiating actions of GABA. The postsynaptic actions of GABA rely on a G protein-mediated activation of PKC. Our results suggest that the postsynaptic action of cotransmitter-mediated potentiation may contribute to the maintenance of the egestive state of Aplysia feeding network and, in more general terms, may participate in the plasticity of networks that mediate complex behaviors.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 312
Author(s):  
Naruki Hagiwara ◽  
Shoma Sekizaki ◽  
Yuji Kuwahara ◽  
Tetsuya Asai ◽  
Megumi Akai-Kasaya

Networks in the human brain are extremely complex and sophisticated. The abstract model of the human brain has been used in software development, specifically in artificial intelligence. Despite the remarkable outcomes achieved using artificial intelligence, the approach consumes a huge amount of computational resources. A possible solution to this issue is the development of processing circuits that physically resemble an artificial brain, which can offer low-energy loss and high-speed processing. This study demonstrated the synaptic functions of conductive polymer wires linking arbitrary electrodes in solution. By controlling the conductance of the wires, synaptic functions such as long-term potentiation and short-term plasticity were achieved, which are similar to the manner in which a synapse changes the strength of its connections. This novel organic artificial synapse can be used to construct information-processing circuits by wiring from scratch and learning efficiently in response to external stimuli.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Mingxue Ma ◽  
Yao Ni ◽  
Zirong Chi ◽  
Wanqing Meng ◽  
Haiyang Yu ◽  
...  

AbstractThe ability to emulate multiplexed neurochemical transmission is an important step toward mimicking complex brain activities. Glutamate and dopamine are neurotransmitters that regulate thinking and impulse signals independently or synergistically. However, emulation of such simultaneous neurotransmission is still challenging. Here we report design and fabrication of synaptic transistor that emulates multiplexed neurochemical transmission of glutamate and dopamine. The device can perform glutamate-induced long-term potentiation, dopamine-induced short-term potentiation, or co-release-induced depression under particular stimulus patterns. More importantly, a balanced ternary system that uses our ambipolar synaptic device backtrack input ‘true’, ‘false’ and ‘unknown’ logic signals; this process is more similar to the information processing in human brains than a traditional binary neural network. This work provides new insight for neuromorphic systems to establish new principles to reproduce the complexity of a mammalian central nervous system from simple basic units.


Sign in / Sign up

Export Citation Format

Share Document