Characterization of an arabinogalactan-protein isolated from pressed juice of Echinacea purpurea by precipitation with the β-glucosyl Yariv reagent

2000 ◽  
Vol 327 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Birgit Classen ◽  
Klaus Witthohn ◽  
Wolfgang Blaschek
2020 ◽  
Author(s):  
Ian Sims ◽  
Richard Furneaux

A gum that exudes from the wounded trunk of the New Zealand native tree Meryta sinclairii has been isolated. The gum was completely precipitated by the β-glucosyl Yariv reagent and was thus determined to be an arabinogalactan-protein (AGP). It contained >95% w/w carbohydrate and only 2% w/w protein with a high level of hydroxyproline. SEC-MALLS showed that the gum had a weight-average molecular weight of 4.45×106Da compared with 6.02×105Da for gum arabic. Constituent sugar and linkage analyses were consistent with polymers comprised of a highly branched backbone of 1,3-linked galactopyranosyl (Galp) residues, with side-chains made up of arabinofuranose- (Araf) containing oligosaccharides, terminated variously by rhamnopyranosyl (Rhap), arabinopyranosyl (Arap), Galp and glucuronopyranosyl (GlcpA) residues. Analysis by one-dimensional and two-dimensional 1H and 13C NMR experiments confirmed the linkage analyses. The structure of the gum is discussed in comparison with the structure of gum arabic and other AGPs. © 2003 Elsevier Science Ltd. All rights reserved.


1989 ◽  
Vol 264 (3) ◽  
pp. 857-862 ◽  
Author(s):  
P A Gleeson ◽  
M McNamara ◽  
R E H Wettenhall ◽  
B A Stone ◽  
G B Fincher

An arabinogalactan-protein (AGP) purified from the filtrate of liquid-suspension-cultured Italian-ryegrass (Lolium multiflorum) endosperm cells by affinity chromatography on myeloma protein J539-Sepharose was deglycosylated with trifluoromethanesulphonic acid to remove polysaccharide chains that are covalently associated with hydroxyproline residues in the peptide component of the proteoglycan. The protein core, which accounts for less than 10% (w/w) of the intact proteoglycan, was purified by h.p.l.c. It has an apparent Mr of 35,000, but reacts very poorly with both Coomassie Brilliant Blue R and silver stains. Amino-acid-sequence analysis of the N-terminus of the h.p.l.c.-purified protein core and of tryptic peptides generated from the unpurified protein reveals a high content of hydroxyproline and alanine. These are sometimes arranged in short (Ala-Hyp) repeat sequences of up to six residues. Polyclonal antibodies raised against the protein core do not cross-react with native AGP, the synthetic peptide (Ala-Hyp)4, poly-L-hydroxyproline or poly-L-proline. The results suggest that the polysaccharide chains in the native AGP render the protein core of the proteoglycan inaccessible to the antibodies and that the immunodominant epitopes include domains of the protein other than those rich in Ala-Hyp repeating units.


2006 ◽  
Vol 20 (5) ◽  
Author(s):  
Ning‐Sun Yang ◽  
Chien‐Yu Wang ◽  
Vani Staniforth ◽  
Ming‐Tsang Chiao ◽  
Po‐Jen Yen ◽  
...  

2005 ◽  
Vol 32 (10) ◽  
pp. 863 ◽  
Author(s):  
Barbara G. Pickard ◽  
Masaaki Fujiki

A previously unknown cytoskeletal structure, now named the plasmalemmal reticulum (Gens et al. 2000, Protoplasma 212, 115–134), was found in cultured BY-2 tobacco cells during a search for a force-focusing mechanism that might enhance signal transduction by the cells’ mechanosensory Ca2+-selective cation channels (MCaCs). This polyhedral structure, which links cell wall, plasma membrane, and internal cytoplasm, prominently contains arabinogalactan protein (AGP). To check for reticulum-promoted Ca2+ elevation, the AGP-binding reagent (β-d-glucosyl)3 Yariv phenylglycoside has been applied to BY-2 cells expressing a free cameleon Ca2+ reporter. Ca2+ elevation was substantial and prolonged. Moreover it occurred in the nucleus as well as the cytoplasm. Cells treated with non-binding mannosyl Yariv reagent could not be discriminated from untreated controls or those treated with carrier solution alone. Supply of the MCaC inhibiter Gd3+ just before treatment with Yariv reagent prevented Ca2+ rise. These data strongly support the hypothesis that the plasmalemmal reticulum controls MCaC activity. The massive inward spread of Ca2+ suggested that entry of the ion through the channels initiated a wave of release from the ER, and YCX in the ER showed Ca2+ levels consistent with this premise. Cytosolic and nuclear Ca2+ often pulsed in control cells in near synchrony and at rates ranging from zero to five cycles per ∼20-min recording. (Pulsation was over-ridden by the applied amounts of glucosyl Yariv compound.) Suggestively but very crudely, oscillation rate was assessed as possibly correlating with stage of cell cycle. Because cell Ca2+ was lowered and pulsation was eliminated by Gd3+, MCaCs appear to participate in these endogenous fluctuations. The extent to which pulsing plays regulatory roles in relatively undifferentiated types of cells should be evaluated.


2012 ◽  
Vol 287 (12) ◽  
pp. 9623-9632 ◽  
Author(s):  
May Hijazi ◽  
Jessica Durand ◽  
Carole Pichereaux ◽  
Frédéric Pont ◽  
Elisabeth Jamet ◽  
...  

2000 ◽  
Vol 47 (2) ◽  
pp. 155-161 ◽  
Author(s):  
Xiaoming Qin ◽  
Ryo Yamauchi ◽  
Koichi Aizawa ◽  
Takahiro Inakuma ◽  
Koji Kato

2006 ◽  
Vol 142 (2) ◽  
pp. 458-470 ◽  
Author(s):  
José M. Estévez ◽  
Marcia J. Kieliszewski ◽  
Natalie Khitrov ◽  
Chris Somerville

Sign in / Sign up

Export Citation Format

Share Document